Low (complexity)In computational complexity theory, a language B (or a complexity class B) is said to be low for a complexity class A (with some reasonable relativized version of A) if AB = A; that is, A with an oracle for B is equal to A. Such a statement implies that an abstract machine which solves problems in A achieves no additional power if it is given the ability to solve problems in B at unit cost. In particular, this means that if B is low for A then B is contained in A.
Complexité dans le pire des casEn informatique, la complexité dans le pire des cas, ou complexité dans le cas le plus défavorable, mesure la complexité (par exemple en temps ou en espace) d'un algorithme dans le pire des cas d'exécution possibles. Elle est exprimée comme une fonction de la taille de l'entrée de l'algorithme. Implicitement, on cherche à construire des algorithmes s'exécutant en utilisant le moins de ressources possible (e.g. le plus vite possible), et il s'agit par conséquent d'une borne supérieure des ressources requises par l'algorithme.
Test de propriétéEn informatique théorique, un test de propriété (ou property testing en anglais) est un test probabiliste qui a pour objectif de déterminer si un objet donné, par exemple un graphe ou une fonction, possède une propriété fixée ou bien s'il est « loin » de l'avoir. Ces algorithmes ont l'avantage d'être très rapides. Les testeurs de propriété sont notamment utiles pour tester que des grands graphes ont certaines propriétés. Considérons l'exemple simpliste suivant : on cherche à savoir si un graphe est vide ou relativement loin de l'être.
Analyse amortieEn informatique, l'analyse amortie est une méthode d'évaluation de la complexité temporelle des opérations sur une structure de données. Cette analyse résulte en une classification des algorithmes et conduit à une théorie spécifique de la complexité des algorithmes que l'on appelle complexité amortie. L'analyse amortie consiste essentiellement à majorer le coût cumulé d'une suite d'opérations pour attribuer à chaque opération la moyenne de cette majoration, en prenant en compte le fait que les cas chers surviennent rarement et isolément et compensent les cas bon marché.
Exponential time hypothesisIn computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by . It states that satisfiability of 3-CNF Boolean formulas cannot be solved in subexponential time, i.e., for all constant , where n is the number of variables in the formula. The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement.
Randomized roundingWithin computer science and operations research, many combinatorial optimization problems are computationally intractable to solve exactly (to optimality). Many such problems do admit fast (polynomial time) approximation algorithms—that is, algorithms that are guaranteed to return an approximately optimal solution given any input. Randomized rounding is a widely used approach for designing and analyzing such approximation algorithms.
Algorithme DPLLEn informatique, l'algorithme de Davis–Putnam–Logemann–Loveland (DPLL) est un algorithme de backtracking, complet, de résolution du problème SAT. Le problème SAT est un problème important à la fois d'un point de vue théorique, en particulier en théorie de la complexité où il est le premier problème prouvé NP-complet et pratique puisqu'il peut apparaître lors de la résolution de problèmes de planification classique, model checking, ou encore diagnostic et jusqu'au configurateur d'un PC ou de son système d'exploitation.
Sharp-P-complet#P-complet, prononcée "sharp P complet" ou "dièse P complet", est une classe de complexité en théorie de la complexité, un domaine de l'informatique théorique. Plus précisément, c'est l'ensemble des problèmes complets de la classe #P. Un problème X est dit #P-complet si et seulement s'il appartient à la classe #P, et si on peut réduire tout problème de #P à X par une réduction de comptage fonctionnant en temps polynomial.
Gap theoremSee also Gap theorem (disambiguation) for other gap theorems in mathematics. In computational complexity theory, the Gap Theorem, also known as the Borodin–Trakhtenbrot Gap Theorem, is a major theorem about the complexity of computable functions. It essentially states that there are arbitrarily large computable gaps in the hierarchy of complexity classes. For any computable function that represents an increase in computational resources, one can find a resource bound such that the set of functions computable within the expanded resource bound is the same as the set computable within the original bound.
Prix TuringLe prix Turing ou ACM Turing Award, en hommage à Alan Turing (1912-1954), est attribué tous les ans depuis 1966 à une personne sélectionnée pour sa contribution de nature technique faite à la communauté informatique. Les contributions doivent être d’une importance technique majeure et durable dans le domaine informatique. La récompense est décernée par l’Association for Computing Machinery (ACM). Cette récompense a été créée par l’InterTrust Technologies Corporation’s Strategic Technologies and Architectural Research Laboratory (STAR Lab).