MGT-424: Advanced data driven business analyticsThis course aims to provide graduate students a grounding in the methods, theory, mathematics and algorithms needed to apply machine learning techniques to in business analytics domain. The course cov
EE-311: Fundamentals of machine learningCe cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
CS-330: Artificial intelligenceIntroduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
EE-411: Fundamentals of inference and learningThis is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternat
CS-423: Distributed information systemsThis course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
MGT-483: Optimal decision makingThis course introduces the theory and applications of optimization. We develop tools and concepts of optimization and decision analysis that enable managers in manufacturing, service operations, marke
ENV-471: Environmental economicsIntroduction to economic analysis applied to environmental issues: all the necessary basic concepts, including cost-benefit analysis, for environmental policy making and its instruments (examples: cli