Potentiel newtonienLa notion de potentiel est une notion essentiellement mathématique. Elle s’introduit non seulement en mécanique mais aussi dans bien d’autres domaines de la science comme la physique, l’électricité ou encore la thermodynamique. On appelle potentiel newtonien tout potentiel scalaire « en ». Dans cet article, on a muni le plan ou l'espace d'un repère orthonormal dans lequel toutes les coordonnées sont exprimées. Tout point y possède des coordonnées du type (x,y,z). Soit F, une force appliquée au point P (x,y,z).
Problème de DirichletEn mathématiques, le problème de Dirichlet est de trouver une fonction harmonique définie sur un ouvert de prolongeant une fonction continue définie sur la frontière de l'ouvert . Ce problème porte le nom du mathématicien allemand Johann Peter Gustav Lejeune Dirichlet. Il n'existe pas toujours de solution au problème de Dirichlet. Dans cette partie, , où est le disque de centre 0 et de rayon 1. Il existe alors une solution au problème de Dirichlet, définie ci-dessous. On a toujours continue sur . On pose : .
Équation intégrale de FredholmEn mathématiques, l'équation intégrale de Fredholm est une équation intégrale étudiée par Ivar Fredholm. La caractéristique principale d'une équation de Fredholm est que les bornes d'intégration sont constantes. Son étude donne naissance à la , à l'étude des et des opérateurs de Fredholm. Il s'agit d'une équation intégrale de la forme : La notation est celle d'Arfken et Weber. Ici la fonction inconnue est Φ, tandis que f et K sont des fonctions connues. La fonction de deux variables K est souvent appelée la fonction opérateur intégral du noyau.
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
SmoothnessIn mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).
Diffusion de la matièreLa diffusion de la matière, ou diffusion chimique, désigne la tendance naturelle d'un système à rendre uniforme le potentiel chimique de chacune des espèces chimiques qu'il comporte. La diffusion chimique est un phénomène de transport irréversible qui tend à homogénéiser la composition du milieu. Dans le cas d'un mélange binaire et en l'absence des gradients de température et de pression, la diffusion se fait des régions de plus forte concentration vers les régions de concentration moindre.