AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Topologievignette|Déformation continue d'une tasse avec une anse, en un tore (bouée). thumb|Un ruban de Möbius est une surface fermée dont le bord se réduit à un cercle. De tels objets sont des sujets étudiés par la topologie. La topologie est la branche des mathématiques qui étudie les propriétés d'objets géométriques préservées par déformation continue sans arrachage ni recollement, comme un élastique que l’on peut tendre sans le rompre.
Mécanique (science)vignette|Gyroscope. Le gyroscope tient en équilibre sur la pointe fixe par le jeu des forces mécaniques (en particulier le couple de rappel) engendrées par la rotation rapide du disque au centre. La mécanique (du grec ancien , « l'art mécanique ») est une branche de la physique dont l'objet est l'étude du mouvement, des déformations ou des états d'équilibre des systèmes physiques. Cette science vise ainsi à décrire les mouvements de différentes sortes de corps, depuis les particules subatomiques avec la mécanique quantique, jusqu'aux galaxies avec la mécanique céleste.
GeologyThe following outline is provided as an overview of and topical guide to geology: Geology – one of the Earth sciences – is the study of the Earth, with the general exclusion of present-day life, flow within the ocean, and the atmosphere. The field of geology encompasses the composition, structure, physical properties, and history of Earth's components, and the processes by which it is shaped. Geologists typically study rock, sediment, soil, rivers, and natural resources.
Théorie des nombresTraditionnellement, la théorie des nombres est une branche des mathématiques qui s'occupe des propriétés des nombres entiers (qu'ils soient entiers naturels ou entiers relatifs). Plus généralement, le champ d'étude de cette théorie concerne une large classe de problèmes qui proviennent naturellement de l'étude des entiers. La théorie des nombres occupe une place particulière en mathématiques, à la fois par ses connexions avec de nombreux autres domaines, et par la fascination qu'exercent ses théorèmes et ses problèmes ouverts, dont les énoncés sont souvent faciles à comprendre, même pour les non-mathématiciens.
Trigonométrievignette|droite|Un triangle rectangle sur lequel est indiqué un angle Â, le côté adjacent à cet angle, le côté opposé à celui-ci, l'hypoténuse du triangle, et son angle droit. vignette|Cercle trigonométrique et angles remarquables vignette|droite|Planche sur la Trigonométrie, 1728 Cyclopaedia. La trigonométrie (du grec τρίγωνος / trígonos, « triangulaire », et μέτρον / métron, « mesure ») est une branche des mathématiques qui traite des relations entre distances et angles dans les triangles et des fonctions trigonométriques telles que sinus, cosinus, tangente.
Fields of historyThe following outline is provided as an overview of and topical guide to history: History – discovery, collection, organization, and presentation of information about past events. History can also mean the period of time after writing was invented (the beginning of recorded history). History can be described as all of the following: Academic discipline – body of knowledge given to – or received by – a disciple (student); a branch or sphere of knowledge, or field of study, that an individual has chosen to specialise in.
Logique classiqueLa logique classique est la première formalisation du langage et du raisonnement mathématique développée à partir de la fin du en logique mathématique. Appelée simplement logique à ses débuts, c'est l'apparition d'autres systèmes logiques formels, notamment de la logique intuitionniste, qui a suscité l'adjonction de l'adjectif classique au terme logique. À cette époque, le terme de logique classique fait référence à la logique aristotélicienne.
Théorie de la relativitévignette|Formule de la théorie de la relativité d'Albert Einstein. L'expression théorie de la relativité renvoie le plus souvent à deux théories complémentaires élaborées par Albert Einstein et Mileva Marić : la relativité restreinte (1905) et la relativité générale (1915). Ce terme peut aussi renvoyer à une idée plus ancienne, la relativité galiléenne, qui s'applique à la mécanique newtonienne. En 1905, le physicien allemand Max Planck utilise l'expression « théorie relative » (Relativtheorie), qui met l'accent sur l'usage du principe de relativité.