Nombre de StrouhalLe nombre de Strouhal est un nombre sans dimension décrivant les mécanismes de circulation oscillante. Ce nombre porte le nom de Vincent Strouhal, physicien tchèque. Physiquement, il représente le rapport du temps d'advection et du temps caractéristique de l'instationnarité. Si , l'écoulement est dit quasi stationnaire. En 1878, en étudiant les notes émises par un fil tendu soumis au vent, le physicien tchèque Vincent Strouhal fut le premier à remarquer la relation entre la fréquence du son et le quotient de la vitesse du vent par le diamètre du fil.
Instabilité de Kelvin-Helmholtzthumb|right|250px|Onde de Kelvin-Helmholtz rendue visible en aval du mont Duval en Australie par la formation de nuages de type fluctus vignette|Une instabilité de Kelvin-Helmholtz vue d'un planeur au-dessus de Grenoble (France). L’instabilité de Kelvin-Helmholtz est un mouvement ondulatoire en dynamique des fluides qui se forme lorsque deux fluides thermiquement stables sont superposés et se déplacent à des vitesses différentes à leur surface de contact.
Interaction fluide-structureL'interaction fluide-structure ou IFS (en anglais, fluid–structure interaction ou FSI) concerne l'étude du comportement d'un solide immergé dans un fluide, dont la réponse peut être fortement affectée de par l'action du fluide. L'étude de ce type d'interaction est motivée par le fait que les phénomènes résultants sont parfois catastrophiques pour les structures mécaniques ou constituent dans la majorité des cas un facteur dimensionnant important.
Moyenne de ReynoldsDans le cadre du traitement en mécanique des fluides de la turbulence, l'utilisation de la décomposition de Reynolds appliquée aux solutions de l'équation de Navier-Stokes permet de simplifier le problème en faisant disparaitre les fluctuations de périodes et d'amplitudes courtes. La méthode est connue sous le nom de moyenne de Reynolds ou sous le terme anglais de RANS pour Reynolds-averaged Navier–Stokes, du nom de celui qui l'a développé, Osborne Reynolds.
Mécanique des fluides diphasiqueLa mécanique des fluides diphasiques est le domaine de la mécanique des fluides qui consiste à étudier ce qui se passe lorsque l'on a affaire à plusieurs fluides qui s'écoulent ensemble : il peut s'agir d'un même fluide présent en deux phases différentes (eau et vapeur par exemple), de deux liquides différents dans une même phase (eau et huile liquides par exemple : cela intéresse particulièrement l'industrie pétrolière) ou encore deux fluides différents dans une phase différente (eau et air par exemple)...
Knudsen diffusionIn physics, Knudsen diffusion, named after Martin Knudsen, is a means of diffusion that occurs when the scale length of a system is comparable to or smaller than the mean free path of the particles involved. An example of this is in a long pore with a narrow diameter (2–50 nm) because molecules frequently collide with the pore wall. As another example, consider the diffusion of gas molecules through very small capillary pores.
Shearing (physics)In continuum mechanics, shearing refers to the occurrence of a shear strain, which is a deformation of a material substance in which parallel internal surfaces slide past one another. It is induced by a shear stress in the material. Shear strain is distinguished from volumetric strain. The change in a material's volume in response to stress and change of angle is called the angle of shear. Often, the verb shearing refers more specifically to a mechanical process that causes a plastic shear strain in a material, rather than causing a merely elastic one.
Génie physiqueLe génie physique désigne l'application de la physique à l'industrie. Il a pour but l'adaptation de découvertes de la physique à des applications concrètes pour l'industrie, considérant les facteurs économiques. Les ingénieurs physiciens apportent des solutions pratiques à des problèmes divers, souvent complexes et inusités, requérant une connaissance approfondie de la physique. Bien que l'ingénieur physicien soit parfaitement adapté pour le travail en industrie, il peut très bien travailler dans le domaine de la recherche fondamentale ou de la physique théorique.
Masse linéiqueLa masse linéique ou masse linéaire est une grandeur physique qui mesure la masse par unité de longueur. Elle est généralement notée ou . On l'utilise pour caractériser les fibres, les microfibres, les fils, les cordages, les tubes, les rails et les autres objets ayant une direction privilégiée. Dans le cas le plus courant, celui d'une substance homogène de longueur L et de masse totale m, la masse linéique peut être déterminée par le rapport : Dans le cas général, on la définit par la relation : où m est la masse, et x est une coordonnée dans la direction privilégiée de l'objet.
High pressureIn science and engineering the study of high pressure examines its effects on materials and the design and construction of devices, such as a diamond anvil cell, which can create high pressure. By high pressure is usually meant pressures of thousands (kilobars) or millions (megabars) of times atmospheric pressure (about 1 bar or 100,000 Pa). Percy Williams Bridgman received a Nobel Prize in 1946 for advancing this area of physics by two magnitudes of pressure (400 MPa to 40 GPa).