Géométrie discrèteLa géométrie discrète est une branche de la géométrie. On parle de géométrie discrète pour la distinguer de la géométrie « continue ». Tout comme cette dernière, elle peut être analytique, les objets sont dans ce cas décrits par des inéquations. Un exemple simple : la géométrie continue en deux dimensions permet de définir des droites, des cercles dans un plan. Ces objets sont des ensembles de points qui sont des couples de nombres réels.
Interprétation de la mécanique quantiqueUne interprétation de la mécanique quantique est une tentative d'explication de la façon dont la théorie mathématique de la mécanique quantique « correspond » à la réalité. Bien que la mécanique quantique ait fait l'objet de démonstrations rigoureuses dans une gamme extraordinairement large d'expériences (aucune prédiction de la mécanique quantique n'a été contredite par l'expérience), il existe un certain nombre d'écoles de pensée concurrentes sur son interprétation.
Analyse de sensibilitéL’analyse de sensibilité est l'étude de la façon dont l'incertitude de la sortie d'un code ou d'un système (numérique ou autre) peut être attribuée à l'incertitude dans ses entrées. Il s'agit d'estimer des indices de sensibilité qui quantifient l'influence d'une entrée ou d'un groupe d'entrées sur la sortie. L'analyse de sensibilité peut être utile pour beaucoup d'applications: Tester la robustesse d'un modèle ou d'un système en présence d'incertitude.
Géométrie algorithmiquevignette|Rendu d'un cylindre à l'aide d'un programme d'ordinateur. La géométrie algorithmique est le domaine de l'algorithmique qui traite des algorithmes manipulant des concepts géométriques. La géométrie algorithmique est l'étude des algorithmes manipulant des objets géométriques. Par exemple, le problème algorithmique qui consiste, étant donné un ensemble de points dans le plan décrits par leurs coordonnées, à trouver la paire de points dont la distance est minimale est un problème d'algorithmique géométrique.
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Statistique multivariéeEn statistique, les analyses multivariées ont pour caractéristique de s'intéresser à des lois de probabilité à plusieurs variables. Les analyses bivariées sont des cas particuliers à deux variables. Les analyses multivariées sont très diverses selon l'objectif recherché, la nature des variables et la mise en œuvre formelle. On peut identifier deux grandes familles : celle des méthodes descriptives (visant à structurer et résumer l'information) et celle des méthodes explicatives visant à expliquer une ou des variables dites « dépendantes » (variables à expliquer) par un ensemble de variables dites « indépendantes » (variables explicatives).
Pseudo-aléatoirethumb|Représentation graphique d'une suite pseudoaléatoire. Le terme pseudo-aléatoire est utilisé en mathématiques et en informatique pour désigner une suite de nombres qui s'approche d'un aléa statistiquement parfait. Les procédés algorithmiques utilisés pour la créer et les sources employées font que la suite ne peut être complètement considérée comme aléatoire. La majorité des nombres pseudo-aléatoires en informatique sont créés à partir d'algorithmes qui produisent une séquence de nombres présentant certaines propriétés du hasard.
Programmation orientée composantthumb|Représentation graphique de composants informatiques. La programmation orientée composant (POC) consiste à utiliser une approche modulaire de l'architecture d'un projet informatique, ce qui permet d'assurer au logiciel une meilleure lisibilité et une meilleure maintenance. Les développeurs, au lieu de créer un exécutable monolithique, se servent de briques réutilisables. La POC n'est pas sans similitudes avec la POO, puisqu'elle revient à utiliser une approche objet, non pas au sein du code, mais au niveau de l'architecture générale du logiciel.
Identité trigonométriqueUne identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation. Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement.
Capacité d'un canalLa capacité d'un canal, en génie électrique, en informatique et en théorie de l'information, est la limite supérieure étroite du débit auquel l'information peut être transmise de manière fiable sur un canal de communication. Suivant les termes du théorème de codage du canal bruyant, la capacité d'un canal donné est le débit d'information le plus élevé (en unités d'information par unité de temps) qui peut être atteint avec une probabilité d'erreur arbitrairement faible. La théorie de l'information, développée par Claude E.