Constante cosmologiqueLa constante cosmologique est un paramètre ajouté par Einstein en février 1917 à ses équations de la relativité générale (1915), dans le but de rendre sa théorie compatible avec l'idée qu'il avait alors d'un Univers statique. La constante cosmologique est notée . Elle a la dimension d'une courbure de l'espace, . Depuis la fin des années 1990, les développements de la cosmologie ont montré que l'expansion de l'Univers, interprétée en termes de masse et d'énergie, pouvait être attribuée à 68 % à une « énergie sombre » dont l'effet est celui de la constante cosmologique.
Espace (notion)L'espace se présente dans l'expérience quotidienne comme une notion de géométrie et de physique qui désigne une étendue, abstraite ou non, ou encore la perception de cette étendue. Conceptuellement, il est le plus souvent synonyme de contenant aux bords indéterminés. Le phénomène reste en lui-même indéterminé car nous ne savons pas s'il manifeste une structure englobante rassemblant toutes les choses et les lieux ou bien s'il ne s'agit que d'un phénomène dérivé de la multiplicité des lieux.
Numerical relativityNumerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.
Tenseur d'EinsteinEn géométrie différentielle, le tenseur d'Einstein est utilisé pour exprimer la courbure d'une variété pseudo-riemannienne. En relativité générale, il apparaît dans l'équation du champ d'Einstein, pour décrire comment le champ gravitationnel est affecté par la présence de matière. L'éponyme du tenseur d'Einstein est le physicien Albert Einstein (-) qui l'a construit au cours de l'élaboration de la relativité générale.
MicrosecondA microsecond is a unit of time in the International System of Units (SI) equal to one millionth (0.000001 or 10−6 or ) of a second. Its symbol is μs, sometimes simplified to us when Unicode is not available. A microsecond is equal to 1000 nanoseconds or of a millisecond. Because the next SI prefix is 1000 times larger, measurements of 10−5 and 10−4 seconds are typically expressed as tens or hundreds of microseconds. 1 microsecond (1 μs) – cycle time for frequency 1e6hertz (1 MHz), the inverse unit.
Conjecture de protection chronologiqueLa conjecture de protection chronologique est une conjecture du physicien Stephen Hawking qui énonce que les lois encore inconnues de la physique pourraient interdire le voyage dans le temps. Même si la relativité générale offre la possibilité de construire des trous de ver permettant de remonter le temps, Stephen Hawking pense qu'une tentative de courbure de l'espace-temps visant à créer un tel passage serait avortée par les fluctuations de champs quantiques.
Ordres de grandeur de duréeAn order of magnitude of time is usually a decimal prefix or decimal order-of-magnitude quantity together with a base unit of time, like a microsecond or a million years. In some cases, the order of magnitude may be implied (usually 1), like a "second" or "year". In other cases, the quantity name implies the base unit, like "century". In most cases, the base unit is seconds or years. Prefixes are not usually used with a base unit of years. Therefore, it is said "a million years" instead of "a mega year".
Physique théoriquevignette|Discussion entre physiciens théoriciens à l'École de physique des Houches. La physique théorique est la branche de la physique qui étudie l’aspect théorique des lois physiques et en développe le formalisme mathématique. C'est dans ce domaine que l'on crée les théories, les équations et les constantes en rapport avec la physique. Elle constitue un champ d'études intermédiaire entre la physique expérimentale et les mathématiques, et a souvent contribué au développement de l’une comme de l’autre.
Geodesics in general relativityIn general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance).
Stationary spacetimeIn general relativity, specifically in the Einstein field equations, a spacetime is said to be stationary if it admits a Killing vector that is asymptotically timelike. In a stationary spacetime, the metric tensor components, , may be chosen so that they are all independent of the time coordinate. The line element of a stationary spacetime has the form where is the time coordinate, are the three spatial coordinates and is the metric tensor of 3-dimensional space. In this coordinate system the Killing vector field has the components .