HOMFLY polynomialIn the mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e. a knot invariant in the form of a polynomial of variables m and l. A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One tool used to answer such questions is a knot polynomial, which is computed from a diagram of the knot and can be shown to be an invariant of the knot, i.e.
Haken manifoldIn mathematics, a Haken manifold is a compact, P2-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in which case a Haken manifold is a compact, orientable, irreducible 3-manifold that contains an orientable, incompressible surface. A 3-manifold finitely covered by a Haken manifold is said to be virtually Haken.
Surface de Seifertvignette|Une surface de Seifert associée à un entrelacs. Ce dernier, en traits orangés épais, est formé par trois cercles : ce sont les anneaux borroméens. La surface possède deux faces, en blanc et bleu sur l'image. En mathématiques, la surface de Seifert est un concept issu de la théorie des nœuds associée à un nœud ou plus généralement à un entrelacs. Il s'agit d'une surface ayant l'entrelacs pour bord et vérifiant un certain nombre de propriétés additionnelles garantissant sa simplicité (surface connexe, compacte et à l'orientation compatible avec celle de l'entrelacs).
Topological quantum field theoryIn gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory.
Espace lenticulaireUn espace lenticulaire est une variété de dimension 3, construit comme espace quotient de la sphère S par l'action libre d'un groupe cyclique d'ordre premier. Les espaces lenticulaires forment une famille, dont les membres sont notés L(p, q). L'adjectif « lenticulaire » vient d'une certaine représentation du domaine fondamental du groupe cyclique, qui ressemble à l'intersection de deux cercles. Leur relative simplicité en fait des objets étudiés en topologie algébrique, notamment en théorie des nœuds, en K-théorie et en théorie du cobordisme.