Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des opérateurs proximaux et des méthodes de gradient conditionnel pour les problèmes convexes composites de minimisation dans l'optimisation des données.
Couvre les méthodes d'ensemble comme les forêts aléatoires et les baies de Naive de Gaussian, expliquant comment elles améliorent la précision de prédiction et estimer les distributions gaussiennes conditionnelles.
Explore l'application de la physique statistique dans les problèmes de calcul, couvrant des sujets tels que l'inférence bayésienne, les modèles de verre de spin de champ moyen, et la détection comprimée.
Défis posés par l'apprentissage des modèles probabilistes, couvrant la complexité des calculs, la reconstruction des données et les lacunes statistiques.