Appartenance (mathématiques)vignette|Le symbole de l'appartenance. En mathématique ensembliste, l’ est une relation entre un élément et un ensemble, et également par abus de notations une relation entre un objet et une classe. On écrit pour signifier que l'élément appartient à l'ensemble , ou que l'objet appartient à la classe . L'axiome d'extensionnalité donne un rôle important à la relation d'appartenance, car elle permet de caractériser un ensemble par les éléments qui lui appartiennent.
Arbre (mathématiques)En mathématiques, un arbre est la donnée d'un ensemble E et d'une relation symétrique R sur E telle que deux points distincts quelconques x et y de E soient reliés par un seul chemin injectif fini, ie n+1 points z0,...,zn de E distincts vérifiant x=z0, ziRzi+1 pour i
Circuit booléenvignette|Exemple circuit booléen à deux entrées et une sortie. Le circuit contient 3 portes logique. En théorie de la complexité, un circuit booléen est un modèle de calcul constitué de portes logiques (fonctions logiques) reliées entre elles. C'est une façon de représenter une fonction booléenne. Un circuit booléen peut être utilisé pour reconnaître un langage formel, c'est-à-dire décider si un mot appartient ou non à un langage particulier. Les caractéristiques des circuits qui reconnaissent un langage permettent de définir (ou redéfinir) des classes de complexité.
Forme normale disjonctiveEn logique booléenne ou en calcul des propositions, une forme normale disjonctive ou FND (en anglais, disjunctive normal form ou DNF) est une normalisation d'une expression logique qui est une disjonction de clauses conjonctives. Elle est utilisée dans la démonstration automatique de théorèmes. Une expression logique est en FND si et seulement si elle est une disjonction d'une ou plusieurs conjonctions d'un ou plusieurs littéraux. Tout comme dans une forme normale conjonctive (FNC), les seuls opérateurs dans une FND sont le et logique, le ou logique et la négation.
Forme normale conjonctiveEn logique booléenne et en calcul des propositions, une formule en forme normale conjonctive ou FNC (en anglais, Conjunctive Normal Form, Clausal Normal Form ou CNF) est une conjonction de clauses, où une clause est une disjonction de littéraux. Les formules en FNC sont utilisées dans le cadre de la démonstration automatique de théorèmes ou encore dans la résolution du problème SAT (en particulier dans l'algorithme DPLL). Une expression logique est en FNC si et seulement si elle est une conjonction d'une ou plusieurs disjonction(s) d'un ou plusieurs littéraux.
Composition of relationsIn the mathematics of binary relations, the composition of relations is the forming of a new binary relation R; S from two given binary relations R and S. In the calculus of relations, the composition of relations is called relative multiplication, and its result is called a relative product. Function composition is the special case of composition of relations where all relations involved are functions. The word uncle indicates a compound relation: for a person to be an uncle, he must be the brother of a parent.
Fonction booléennevignette|Arbre de décision binaire Une fonction booléenne est une fonction prenant en entrée une liste de bits et donnant en sortie un unique bit. Les fonctions booléennes sont très utilisées en informatique théorique, notamment en théorie de la complexité et en cryptologie (par exemple dans les boîtes-S et les chiffrements par flot -- fonction de filtrage ou de combinaison de registres à décalage à rétroaction linéaire). Une fonction booléenne est une fonction de dans où désigne le corps fini à 2 éléments.
Circuit complexityIn theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes.
Littéral (logique)En logique mathématique, un littéral est un atome (aussi appelé littéral positif) ou la négation d'un atome (aussi appelé littéral négatif). En logique propositionnelle, une variable P est un littéral, de même que sa négation ¬P ; les formes normales disjonctives sont les disjonctions de conjonctions de littéraux, ainsi que les littéraux seuls, les disjonctions et conjonctions de littéraux, et les disjonctions de conjonctions et de littéraux. Un littéral unitaire (resp.
Weak orderingIn mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets (rankings without ties) and are in turn generalized by (strictly) partially ordered sets and preorders.