Simulation à événements discretsLa simulation à évènements discrets est une technique utilisée dans le cadre de l’étude de la dynamique des systèmes. Elle consiste en une modélisation informatique où le changement de l'état d'un système, au cours du temps, est une suite d'évènements discrets. Chaque évènement arrive à un instant donné et modifie l'état du système. De nos jours, cette technique est couramment utilisée tant par les industries et les entreprises de services afin de concevoir, optimiser et valider leurs organisations que par les centres de recherche dans l’optique d’étudier les systèmes complexes non linéaires.
Perte de mémoire (probabilités)En probabilités et statistique, la perte de mémoire est une propriété de certaines lois de probabilité : la loi exponentielle et la loi géométrique. On dit que ce sont des lois sans mémoire. Cette propriété est le plus souvent exprimée en termes de . Supposons qu'une variable aléatoire soit définie comme le temps passé dans un magasin de l'heure d'ouverture (disons neuf heures du matin) à l'arrivée du premier client. On peut donc voir comme le temps qu'un serveur attend avant l'arrivée du premier client.
Product-form solutionIn probability theory, a product-form solution is a particularly efficient form of solution for determining some metric of a system with distinct sub-components, where the metric for the collection of components can be written as a product of the metric across the different components. Using capital Pi notation a product-form solution has algebraic form where B is some constant. Solutions of this form are of interest as they are computationally inexpensive to evaluate for large values of n.
Stochastic geometryIn mathematics, stochastic geometry is the study of random spatial patterns. At the heart of the subject lies the study of random point patterns. This leads to the theory of spatial point processes, hence notions of Palm conditioning, which extend to the more abstract setting of random measures. There are various models for point processes, typically based on but going beyond the classic homogeneous Poisson point process (the basic model for complete spatial randomness) to find expressive models which allow effective statistical methods.
Continuum percolation theoryIn mathematics and probability theory, continuum percolation theory is a branch of mathematics that extends discrete percolation theory to continuous space (often Euclidean space Rn). More specifically, the underlying points of discrete percolation form types of lattices whereas the underlying points of continuum percolation are often randomly positioned in some continuous space and form a type of point process. For each point, a random shape is frequently placed on it and the shapes overlap each with other to form clumps or components.
G-networkIn queueing theory, a discipline within the mathematical theory of probability, a G-network (generalized queueing network, often called a Gelenbe network) is an open network of G-queues first introduced by Erol Gelenbe as a model for queueing systems with specific control functions, such as traffic re-routing or traffic destruction, as well as a model for neural networks.
Renewal theoryRenewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of rewards incurred at each holding time, which are IID but need not be independent of the holding times. A renewal process has asymptotic properties analogous to the strong law of large numbers and central limit theorem.
Processus ponctuelEn probabilité et statistique, un processus ponctuel est un type particulier de processus stochastique pour lequel une réalisation est un ensemble de points isolés du temps et/ou de l'espace. Par exemple, la position des arbres dans une forêt peut être modélisée comme la réalisation d'un processus ponctuel. Les processus ponctuels sont des objets très étudiés en probabilité et en statistique pour représenter et analyser des données spatialisées qui interviennent dans une multitude de domaines telle que l'écologie, l'astronomie, l'épidémiologie, la géographie, la sismologie, les télécommunications, la science des matériaux et beaucoup d'autres.