La théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple.
Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente. Elle date du début du avec l'axiomatique de Kolmogorov. Des objets tels que les événements, les mesures de probabilité, les espaces probabilisés ou les variables aléatoires sont centraux dans la théorie. Ils permettent de traduire de manière abstraite les comportements ou des quantités mesurées qui peuvent être supposés aléatoires. En fonction du nombre de valeurs possibles pour le phénomène aléatoire étudié, la théorie des probabilités est dite discrète ou continue. Dans le cas discret, c'est-à-dire pour un nombre au plus dénombrable d'états possibles, la théorie des probabilités se rapproche de la théorie du dénombrement ; alors que dans le cas continu, la théorie de l'intégration et la théorie de la mesure donnent les outils nécessaires.
Les objets et résultats probabilistes sont un support nécessaire à la statistique, c'est le cas par exemple du théorème de Bayes, de l'évaluation des quantiles ou du théorème central limite et de la loi normale. Cette modélisation du hasard permet également de résoudre plusieurs paradoxes probabilistes.
Qu'il soit discret ou continu, le calcul stochastique est l'étude des phénomènes aléatoires qui dépendent du temps. La notion d'intégrale stochastique et d'équation différentielle stochastique font partie de cette branche de la théorie des probabilités. Ces processus aléatoires permettent de faire des liens avec plusieurs domaines plus appliqués tels que les mathématiques financières, la mécanique statistique, le , etc.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En théorie des probabilités, une mesure aléatoire est une détermination de mesure d'un élément aléatoire. Soit X un espace métrique séparable complet et la tribu de son ensemble de Borel. Une mesure de Borel μ sur X est finie si μ (A) < ∞ pour chaque ensemble A borélien limité. Soit l'espace de toutes les mesures finies sur . Soit un espace probabilisé. Alors, une mesure aléatoire des cartes de cet espace de probabilité à l'espace mesurable .
En théorie des probabilités, un processus de Lévy, nommé d'après le mathématicien français Paul Lévy, est un processus stochastique en temps continu, continu à droite limité à gauche (càdlàg), partant de 0, dont les accroissements sont stationnaires et indépendants (cette notion est expliquée ci-dessous). Les exemples les plus connus sont le processus de Wiener et le processus de Poisson.
Un processus de Poisson composé, nommé d'après le mathématicien français Siméon Denis Poisson, est un processus stochastique en temps continu à droite limité à gauche (Càdlàg). C'est en particulier un processus de Lévy. Un processus de Poisson composé est un processus aléatoire indexé par le temps qui s’écrit où est un processus de Poisson et est une suite de variables aléatoires indépendantes et identiquement distribuées et indépendantes de . Comme tout processus de Lévy, le processus de Poisson composé est à accroissements indépendants et à accroissements stationnaires.
La théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.
vignette|Une régression linéaire. Les statistiques, dans le sens populaire du terme, traitent à l'aide des mathématiques l'étude de groupe d'une population. En statistique descriptive, on se contente de décrire un échantillon à partir de grandeurs comme la moyenne, la médiane, l'écart type, la proportion, la corrélation, etc. C'est souvent la technique qui est utilisée dans les recensements. Dans un sens plus large, la théorie statistique est utilisée en recherche dans un but inférentiel.
Un processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Introduction à la théorie des martingales à temps discret, en particulier aux théorèmes de convergence et d'arrêt. Application aux processus de branchement. Introduction au mouvement brownien et étude
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Introduit les bases de la probabilité, couvrant les probabilités d'événement, les probabilités conditionnelles et l'indépendance.
Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...
The probability of detecting technosignatures (i.e., evidence of technological activity beyond Earth) increases with their longevity, or the time interval over which they manifest. Therefore, the assumed distribution of longevities has some bearing on the ...
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...