Let X be a complex projective K3 surface and let T-X be its transcendental lattice; the characteristic polynomials of isometries of T-X induced by automorphisms of X are powers of cyclotomic polynomials. Which powers of cyclotomic polynomials occur? The ai ...
Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
In this paper we use the Riemann zeta distribution to give a new proof of the Erdos-Kac Central Limit Theorem. That is, if zeta(s) = Sigma(n >= 1) (1)(s)(n) , s > 1, then we consider the random variable X-s with P(X-s = n) = (1) (zeta) ( ...
Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment wi ...
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
Self-attention mechanisms and non-local blocks have become crucial building blocks for state-of-the-art neural architectures thanks to their unparalleled ability in capturing long-range dependencies in the input. However their cost is quadratic with the nu ...
The minimization of a data-fidelity term and an additive regularization functional gives rise to a powerful framework for supervised learning. In this paper, we present a unifying regularization functional that depends on an operator L\documentclass[12pt]{ ...
In this text, we will show the existence of lattice packings in a family of dimensions by employing division algebras. This construction is a generalization of Venkatesh's lattice packing result Venkatesh (Int Math Res Notices 2013(7): 1628-1642, 2013). In ...
We prove an identity relating the permanent of a rank 2 matrix and the determinants of its Hadamard powers. When viewed in the right way, the resulting formula looks strikingly similar to an identity of Carlitz and Levine, suggesting the possibility that t ...