Interaction élémentaireQuatre interactions élémentaires sont responsables de tous les phénomènes physiques observés dans l'Univers, chacune se manifestant par une force dite force fondamentale. Ce sont l'interaction nucléaire forte, l'interaction électromagnétique, l'interaction faible et l'interaction gravitationnelle. En physique classique, les lois de la gravitation et de l'électromagnétisme étaient considérées comme axiomes.
GravitonLe graviton est une particule élémentaire hypothétique qui transmettrait la gravité, prévue dans la plupart des systèmes de gravité quantique. Il serait donc le quantum de la force gravitationnelle. En langage courant, on peut dire que les gravitons sont les messagers de la gravité, ou les supports de la force. Pour matérialiser cette force, on pourrait prendre l'exemple d'une fronde avec la ficelle (graviton) qui tient la pierre. Plus il y en a dans un champ gravitationnel, plus ce champ est puissant.
Trou noir extrémalEn physique théorique, un trou noir extrémal est un trou noir avec la masse minimale possible compatible avec sa charge électrique et son moment angulaire. Dans les théories dites supersymétriques, comme la théorie des supercordes, les trous noirs extrêmaux sont souvent supersymétriques, ce qui signifie qu'ils sont invariants sous plusieurs supercharges. Ces trous noirs sont stables. La gravité de surface d'un trou noir extrémal s'annule. Sa température de Hawking s'annule de sorte qu'il n'émet pas de rayonnement de Hawking.
Extra dimensionsIn physics, extra dimensions are proposed additional space or time dimensions beyond the (3 + 1) typical of observed spacetime, such as the first attempts based on the Kaluza–Klein theory. Among theories proposing extra dimensions are: Large extra dimension, mostly motivated by the ADD model, by Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali in 1998, in an attempt to solve the hierarchy problem. This theory requires that the fields of the Standard Model are confined to a four-dimensional membrane, while gravity propagates in several additional spatial dimensions that are large compared to the Planck scale.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Causal dynamical triangulationCausal dynamical triangulation (abbreviated as CDT), theorized by Renate Loll, Jan Ambjørn and Jerzy Jurkiewicz, is an approach to quantum gravity that, like loop quantum gravity, is background independent. This means that it does not assume any pre-existing arena (dimensional space) but, rather, attempts to show how the spacetime fabric itself evolves. There is evidence that, at large scales, CDT approximates the familiar 4-dimensional spacetime but shows spacetime to be 2-dimensional near the Planck scale, and reveals a fractal structure on slices of constant time.
Group field theoryGroup field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group. It is closely related to background independent quantum gravity approaches such as loop quantum gravity, the spin foam formalism and causal dynamical triangulation. It can be shown that its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds (depending on the representation of the fields).
Singularité gravitationnelleEn relativité générale, une singularité gravitationnelle est une région de l'espace-temps au voisinage de laquelle certaines quantités décrivant le champ gravitationnel deviennent infinies quel que soit le système de coordonnées retenu. Les singularités gravitationnelles sont des singularités mises en évidence par les solutions de l'équation du champ gravitationnel d'Albert Einstein. Une singularité gravitationnelle est une singularité du tenseur métrique g et non une simple singularité de coordonnées.