Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Explique la détermination des prix de l'état d'équilibre dans la tarification des actifs par le biais de la compensation du marché de la consommation et des contraintes budgétaires.
Couvre les bases de l'apprentissage du renforcement, y compris les processus décisionnels de Markov et les méthodes de gradient des politiques, et explore les applications du monde réel et les avancées récentes.
Discute du gradient des politiques et des méthodes acteurs-critiques, en se concentrant sur les traces d'éligibilité et leur application dans les tâches d'apprentissage de renforcement.
Explore l'apprentissage et le contrôle des systèmes complexes, en abordant les défis et les possibilités en matière de technologie et de recherche interdisciplinaire.
S'insère dans la dynamique de l'apprentissage collectif avec exploitation de la similitude, couvrant l'apprentissage structuré, les cadres d'adaptation, la modélisation, la simulation et les résultats expérimentaux.
Explore la possibilité de consensus des systèmes multi-agents interconnectés linéaires, en mettant l'accent sur l'obtention d'un consensus dans les systèmes multi-agents.