Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Récurrence transfinieEn mathématiques, on parle de récurrence transfinie ou de récursion transfinie pour deux principes reliés mais distincts. Les définitions par récursion transfinie — permettent de construire des objets infinis, et généralisent les définitions de suite par récurrence sur l'ensemble N des entiers naturels en considérant des familles indexées par un ordinal infini quelconque, au lieu de se borner au plus petit d'entre eux qu'est N, appelé ω en tant que nombre ordinal.
Théorie des typesEn mathématiques, logique et informatique, une théorie des types est une classe de systèmes formels, dont certains peuvent servir d'alternatives à la théorie des ensembles comme fondation des mathématiques. Ils ont été historiquement introduits pour résoudre le paradoxe d'un axiome de compréhension non restreint. En théorie des types, il existe des types de base et des constructeurs (comme celui des fonctions ou encore celui du produit cartésien) qui permettent de créer de nouveaux types à partir de types préexistant.
Système axiomatiqueEn mathématiques, un système axiomatique est un ensemble d'axiomes dont certains ou tous les axiomes peuvent être utilisés logiquement pour dériver des théorèmes. Une théorie consiste en un système axiomatique et tous ses théorèmes dérivés. Un système axiomatique complet est un type particulier de système formel. Une théorie formelle signifie généralement un système axiomatique, par exemple formulé dans la théorie des modèles. Une démonstration formelle est une interprétation complète d'une démonstration mathématique dans un système formel.
Equivalence classIn mathematics, when the elements of some set have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set into equivalence classes. These equivalence classes are constructed so that elements and belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set and an equivalence relation on the of an element in denoted by is the set of elements which are equivalent to It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of by and is denoted by .
Upletvignette|Coordonnées XYZ. Basé sur le travail d'InductiveLoad En mathématiques, un uplet (désigné aussi par liste , famille finie, ou suite finie) est une collection ordonnée finie d'objets. Plus précisément, si n est un entier naturel, alors un n-uplet, ou n-uple, ou n-liste est une collection ordonnée de n objets, appelés « composantes » ou « éléments » ou « termes » du n-uplet. En programmation informatique, on trouve une notion équivalente dans certains langages, tels que Python, Rust, OCaml, Scala, Swift ou MDX.
Connected relationIn mathematics, a relation on a set is called connected or complete or total if it relates (or "compares") all pairs of elements of the set in one direction or the other while it is called strongly connected if it relates pairs of elements. As described in the terminology section below, the terminology for these properties is not uniform. This notion of "total" should not be confused with that of a total relation in the sense that for all there is a so that (see serial relation).
Théorème de ZermeloEn mathématiques, le théorème de Zermelo, appelé aussi théorème du bon ordre, est un résultat de théorie des ensembles, démontré en 1904 par Ernst Zermelo, qui affirme : Le théorème de Zermelo, l'axiome du choix et le lemme de Zorn sont équivalents : Soient E un ensemble bien ordonné, et P(E) l'ensemble de ses parties. Alors, on définit une fonction de choix sur P(E){⌀} en associant, à chaque partie non vide de E, son plus petit élément (l'existence d'une telle fonction est un des énoncés possibles de l'axiome du choix).
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Univers constructibleEn mathématiques et en théorie des ensembles, l'univers constructible, ou l'univers constructible de Gödel, noté , est une classe d'ensembles qui peuvent entièrement être décrits en termes d'ensembles plus simples. Elle a été introduite en 1938 par Kurt Gödel dans son article sur . Il y montrait que cette classe est un de la théorie ZF et que l'axiome du choix et l'hypothèse généralisée du continu sont vrais dans ce modèle. Ceci prouve que ces deux propositions sont cohérentes avec les axiomes de ZF, à condition que ZF soit déjà cohérente.