Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Simple random sampleIn statistics, a simple random sample (or SRS) is a subset of individuals (a sample) chosen from a larger set (a population) in which a subset of individuals are chosen randomly, all with the same probability. It is a process of selecting a sample in a random way. In SRS, each subset of k individuals has the same probability of being chosen for the sample as any other subset of k individuals. A simple random sample is an unbiased sampling technique. Simple random sampling is a basic type of sampling and can be a component of other more complex sampling methods.
Biais de sélectionDans une étude statistique, le terme biais de sélection désigne une erreur systématique faite lors de la sélection des sujets à étudier. Ce terme regroupe tous les biais pouvant conduire à ce que les sujets effectivement observés lors d'une enquête ne constituent pas un groupe représentatif des populations censées être étudiées et ne permettent donc pas de répondre aux questions posées dans le protocole. Les biais de sélection se produisent lors de l'échantillonnage, c'est-à-dire lors de la sélection d'un échantillon représentatif de la population étudiée.
Échantillonnage stratifiévignette|Vous prenez un échantillon aléatoire stratifié en divisant d'abord la population en groupes homogènes (semblables en eux-mêmes) (strates) qui sont distincts les uns des autres, c'est-à-dire. Le groupe 1 est différent du groupe 2. Ensuite, choisissez un EAS (échantillon aléatoire simple) distinct dans chaque strate et combinez ces EAS pour former l'échantillon complet. L'échantillonnage aléatoire stratifié est utilisé pour produire des échantillons non biaisés.
Cluster samplingIn statistics, cluster sampling is a sampling plan used when mutually homogeneous yet internally heterogeneous groupings are evident in a statistical population. It is often used in marketing research. In this sampling plan, the total population is divided into these groups (known as clusters) and a simple random sample of the groups is selected. The elements in each cluster are then sampled. If all elements in each sampled cluster are sampled, then this is referred to as a "one-stage" cluster sampling plan.
StatistiqueLa statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Sondage (statistique)Un sondage est une méthode statistique visant à évaluer les proportions de différentes caractéristiques d'une population à partir de l'étude d'une partie seulement de cette population, appelée échantillon. Les proportions sont déterminées avec des marges d'erreur, dans lesquelles se situent les proportions recherchées avec telle ou telle probabilité. Par métonymie, le mot sondage désigne également le document présentant les résultats de l'étude par sondage. Les sondages les plus connus du grand public portent sur des populations humaines.
Poisson samplingIn survey methodology, Poisson sampling (sometimes denoted as PO sampling) is a sampling process where each element of the population is subjected to an independent Bernoulli trial which determines whether the element becomes part of the sample. Each element of the population may have a different probability of being included in the sample (). The probability of being included in a sample during the drawing of a single sample is denoted as the first-order inclusion probability of that element ().
Sampling designIn the theory of finite population sampling, a sampling design specifies for every possible sample its probability of being drawn. Mathematically, a sampling design is denoted by the function which gives the probability of drawing a sample During Bernoulli sampling, is given by where for each element is the probability of being included in the sample and is the total number of elements in the sample and is the total number of elements in the population (before sampling commenced).
Biais des survivantsLe biais des survivants est une forme de biais de sélection consistant à surévaluer les chances de succès d'une initiative en concentrant l'attention sur les sujets ayant réussi mais qui sont des exceptions statistiques (des « survivants ») plutôt que des cas représentatifs. En architecture également, les bâtiments de plus de cent ans encore debout donnent une fausse impression de « qualité de la construction d'antan » alors qu'ils ne représentent qu'une infime part de ce qui a été construit depuis l'invention de la construction, le reste s'étant écroulé ou ayant été démoli.