Concept

Cluster sampling

Résumé
In statistics, cluster sampling is a sampling plan used when mutually homogeneous yet internally heterogeneous groupings are evident in a statistical population. It is often used in marketing research. In this sampling plan, the total population is divided into these groups (known as clusters) and a simple random sample of the groups is selected. The elements in each cluster are then sampled. If all elements in each sampled cluster are sampled, then this is referred to as a "one-stage" cluster sampling plan. If a simple random subsample of elements is selected within each of these groups, this is referred to as a "two-stage" cluster sampling plan. A common motivation for cluster sampling is to reduce the total number of interviews and costs given the desired accuracy. For a fixed sample size, the expected random error is smaller when most of the variation in the population is present internally within the groups, and not between the groups. Cluster elemental The populati
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (5)

Chargement

Chargement

Chargement

Afficher plus
Personnes associées

Aucun résultat

Unités associées

Aucun résultat

Concepts associés (4)
Échantillonnage (statistiques)
thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour esti
Simple random sample
In statistics, a simple random sample (or SRS) is a subset of individuals (a sample) chosen from a larger set (a population) in which a subset of individuals are chosen randomly, all with the same pr
Échantillonnage stratifié
vignette|Vous prenez un échantillon aléatoire stratifié en divisant d'abord la population en groupes homogènes (semblables en eux-mêmes) (strates) qui sont distincts les uns des autres, c'est-à-dire.
Afficher plus
Cours associés (9)
MICRO-511: Image processing I
Introduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping in JAVA. Application to real-world examples in industrial vision and biomedical imaging.
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the data science world (pandas, scikit-learn, Spark, etc.)
CS-233(b): Introduction to machine learning (BA4)
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and practically implemented.
Afficher plus