Groupe orthogonalEn mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
Spin-1/2In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started. Particles having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks.
Quaternions et rotation dans l'espaceLes quaternions unitaires fournissent une notation mathématique commode pour représenter l'orientation et la rotation d'objets en trois dimensions. Comparés aux angles d'Euler, ils sont plus simples à composer et évitent le problème du blocage de cardan. Comparés aux matrices de rotations, ils sont plus stables numériquement et peuvent se révéler plus efficaces. Les quaternions ont été adoptés dans des applications en infographie, robotique, navigation, dynamique moléculaire et en mécanique spatiale des satellites.
Représentation des algèbres de CliffordEn mathématiques, les représentations des algèbres de Clifford sont aussi connues sous le nom de modules de Clifford. En général, une algèbre de Clifford C est une algèbre centrale simple sur une certaine extension de corps L d'un corps K sur lequel la forme quadratique Q définissant C est définie. La théorie algébrique des modules de Clifford a été fondée dans un article de M. F. Atiyah, R. Bott et A. Shapiro. Nous aurons besoin d'étudier les matrices qui anticommutent (AB = –BA) car les vecteurs orthogonaux anticommutent dans les algèbres de Clifford.