En mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E. La loi de composition de ce groupe est la composition des applications.
Dans cet article, K désigne un corps commutatif et E un espace vectoriel de dimension finie non nulle n sur K et q désigne une forme quadratique non dégénérée sur E.
L'ensemble des éléments f du groupe linéaire GL(E) de E tels que q(f(x)) = q(x) pour tout vecteur x de E est un groupe pour la composition des applications. On l'appelle groupe orthogonal de q et on le note O(q) ou O(E, q).
Exemple. Un cas important est celui de la forme quadratique suivante (en supposant que la caractéristique de K est différente de 2) : E = K, et q est la forme quadratique canonique :
Le groupe orthogonal correspondant est noté O(n,K), ou On(K). Il est appelé groupe orthogonal standard de degré n sur K. Il s'identifie canoniquement au groupe des matrices orthogonales n×n (une matrice est dite orthogonale si sa transposée est son inverse). La loi interne de ce groupe est la multiplication matricielle. C'est un sous-groupe du groupe linéaire GL(n,K).
Le déterminant de tout élément de O(q) est égal à 1 ou à –1.
Si la caractéristique de K est différente de 2, l'ensemble O(q) ∩ SL(E) des éléments de O(q) dont le déterminant est 1 est un sous-groupe de O(q), que l'on appelle groupe spécial orthogonal de q et on le note SO(q) ou SO(E, q). Dans le cas de l'exemple vu plus haut, on le note aussi SO(n, K) ou SOn(K). Donc SO(n, K) est le groupe des matrices orthogonales d'ordre n dont le déterminant est 1. SO(q) est un sous-groupe d'indice 2 de O(q), et donc SO(n, K) est un sous-groupe d'indice 2 de O(n, K).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
En mathématiques, le groupe diédral d'ordre 2n, pour un nombre naturel non nul n, est un groupe qui s'interprète notamment comme le groupe des isométries du plan conservant un polygone régulier à n côtés. Le groupe est constitué de n éléments correspondant aux rotations et n autres correspondant aux réflexions. Il est noté Dn par certains auteurs et D par d'autres. On utilisera ici la notation D. Le groupe D est le groupe cyclique d'ordre 2, noté C ; le groupe D est le groupe de Klein à quatre éléments.
Une matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité. Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ ou les matrices de permutation, comme Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A. Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1.
En mathématiques, le groupe général linéaire — ou groupe linéaire — de degré n d’un corps commutatif K (ou plus généralement d'un anneau commutatif unifère) est le groupe des matrices inversibles de taille n à coefficients dans K, muni du produit matriciel. On le note GL(K) ou GL(n, K) et il représente les automorphismes de l’espace vectoriel K. Ce groupe est non abélien dès lors que n > 1. Lorsque K est un corps commutatif, l’ensemble GL(n, K) est en outre un ouvert pour la topologie de Zariski.
Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...
Let X be a complex projective K3 surface and let T-X be its transcendental lattice; the characteristic polynomials of isometries of T-X induced by automorphisms of X are powers of cyclotomic polynomials. Which powers of cyclotomic polynomials occur? The ai ...
The arise of disagreement is an emergent phenomenon that can be observed within a growing social group and, beyond a certain threshold, can lead to group fragmentation. To better understand how disagreement emerges, we introduce an analytically tractable m ...