Substance chimiquethumb|Différentes substances chimiques de la famille des lanthanides. Une substance chimique, ou produit chimique (parfois appelée substance pure), est tout échantillon de matière de composition chimique définie et présentant des propriétés caractéristiques (couleur, odeur, densité, point de fusion), indépendamment de son origine. Il n'est pas toujours aisé de donner une définition précise d'une substance chimique. De manière générale, cette notion désigne un produit manufacturé (synthétisé) par l'Homme (n'existant pas dans la nature ou copiant des molécules existant dans la nature).
Langage formelUn langage formel, en mathématiques, en informatique et en linguistique, est un ensemble de mots. L'alphabet d'un langage formel est l'ensemble des symboles, lettres ou lexèmes qui servent à construire les mots du langage ; souvent, on suppose que cet alphabet est fini. La théorie des langages formels a pour objectif de décrire les langages formels. Les mots sont des suites d'éléments de cet alphabet ; les mots qui appartiennent à un langage formel particulier sont parfois appelés mots bien formés ou formules bien formées.
Grandeur physiqueOn appelle grandeur physique, ou simplement grandeur, toute propriété d'un phénomène physique, d'un corps ou d'une substance, qui peut être mesurée ou calculée, et dont les valeurs possibles s'expriment à l'aide d'un nombre (réel ou complexe) et d'une référence (comme une unité de mesure, une échelle de valeurs ou une échelle ordinale). La précision de la mesure est indiquée par l'incertitude de mesure.
ArithmétiqueL'arithmétique est la branche des mathématiques qui étudie les nombres entiers naturels , relatifs et rationnels , voire réels , ainsi que leurs relations et propriétés, en lien avec quelques opérations élémentaires : addition (+), soustraction (−), multiplication (×), division (÷, /, ou :), puissance et racine (). Le terme inclut parfois d'autres concepts de la théorie des nombres. Le mot arithmétique vient du grec ancien , « nombre ». L’origine de l'arithmétique semble être une invention phénicienne.
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Logique mathématiqueLa logique mathématique ou métamathématique est une discipline des mathématiques introduite à la fin du , qui s'est donné comme objet l'étude des mathématiques en tant que langage. Les objets fondamentaux de la logique mathématique sont les formules représentant les énoncés mathématiques, les dérivations ou démonstrations formelles représentant les raisonnements mathématiques et les sémantiques ou modèles ou interprétations dans des structures qui donnent un « sens » mathématique générique aux formules (et parfois même aux démonstrations) comme certains invariants : par exemple l'interprétation des formules du calcul des prédicats permet de leur affecter une valeur de vérité'.
Théorie des nombresTraditionnellement, la théorie des nombres est une branche des mathématiques qui s'occupe des propriétés des nombres entiers (qu'ils soient entiers naturels ou entiers relatifs). Plus généralement, le champ d'étude de cette théorie concerne une large classe de problèmes qui proviennent naturellement de l'étude des entiers. La théorie des nombres occupe une place particulière en mathématiques, à la fois par ses connexions avec de nombreux autres domaines, et par la fascination qu'exercent ses théorèmes et ses problèmes ouverts, dont les énoncés sont souvent faciles à comprendre, même pour les non-mathématiciens.
Logique classiqueLa logique classique est la première formalisation du langage et du raisonnement mathématique développée à partir de la fin du en logique mathématique. Appelée simplement logique à ses débuts, c'est l'apparition d'autres systèmes logiques formels, notamment de la logique intuitionniste, qui a suscité l'adjonction de l'adjectif classique au terme logique. À cette époque, le terme de logique classique fait référence à la logique aristotélicienne.
Mémoire (informatique)En informatique, la mémoire est un dispositif électronique numérique qui sert à stocker des données. La mémoire est un composant essentiel, présent dans tous les ordinateurs, les consoles de jeux, les GPS et de nombreux appareils électroniques. Les mémoires sont vendues sous forme de pièces détachées de matériel informatique, ou de composants électroniques. Les différences entre les pièces sont la forme, l'usage qui en est fait, la technologie utilisée, la capacité de stockage et le rapport entre le coût et la capacité.