Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la préparation des données pour l'apprentissage automatique, en mettant l'accent sur la conversion numérique et les techniques efficaces de visualisation des données.
Couvre les bases du traitement des flux de données, y compris des outils comme Apache Storm et Kafka, des concepts clés tels que le temps d'événement et les opérations de fenêtre, et les défis du traitement des flux.
Discute des techniques avancées d'optimisation Spark pour gérer efficacement les Big Data, en se concentrant sur la parallélisation, les opérations de mélange et la gestion de la mémoire.
Examine les défis que posent les hypothèses de données, les biais et d'autres aspects de la recherche, y compris les écritures incomplètes et les frustrations des nouveaux arrivants.
Introduit le cours d'analyse des données appliquées à l'EPFL, couvrant un large éventail de sujets d'analyse des données et mettant l'accent sur l'apprentissage continu en sciences des données.
Couvre les progrès des systèmes d'analyse de données et le rôle de la co-conception matériel-logiciel dans l'amélioration des performances à l'ère post-Moore.