Explore la sémantique lexicale, le sens des mots, les relations sémantiques et WordNet, en mettant en évidence les applications dans l'ingénierie du langage et la récupération d'informations.
Introduit des concepts d'apprentissage profond pour les NLP, couvrant l'intégration de mots, les RNN et les Transformateurs, mettant l'accent sur l'auto-attention et l'attention multi-têtes.
Explore les intégrations de mots, les modèles tels que CBOW et Skipgram, Fasttext, Glove, les intégrations de sous-mots et leurs applications dans la recherche et la classification de documents.
Présente des modèles de langage classiques, leurs applications et des concepts fondamentaux tels que la modélisation et les mesures d'évaluation basées sur le nombre.
Couvre la récupération d'informations probabilistes, la pertinence de la modélisation en tant que probabilité, l'expansion des requêtes et la génération automatique de thésaurus.
Explore les méthodes d'extraction de l'information, y compris les approches traditionnelles et fondées sur l'intégration, l'apprentissage supervisé, la surveillance à distance et l'induction taxonomique.