Transition kernelIn the mathematics of probability, a transition kernel or kernel is a function in mathematics that has different applications. Kernels can for example be used to define random measures or stochastic processes. The most important example of kernels are the Markov kernels. Let , be two measurable spaces. A function is called a (transition) kernel from to if the following two conditions hold: For any fixed , the mapping is -measurable; For every fixed , the mapping is a measure on .
Théorème de représentation de SkorokhodEn théorie des probabilités, le théorème de représentation de Skorokhod montre qu'une suite de variables aléatoires convergeant en loi peut toujours, en un certain sens, être représentée par une suite de variables aléatoires convergeant presque sûrement. Ce théorème porte le nom du mathématicien ukrainien A.V. Skorokhod. vignette|Illustration du théorème de représentation de Skorokhod Soit une suite de variables aléatoires à valeurs dans un espace topologique de Lusin.
Multivariate t-distributionIn statistics, the multivariate t-distribution (or multivariate Student distribution) is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.
Andreï KolmogorovAndreï Nikolaïevitch Kolmogorov ( ; à Tambov – à Moscou) est un mathématicien russe et soviétique qui a apporté des contributions significatives en mathématiques, notamment en théorie des probabilités, topologie, turbulence, mécanique classique, logique intuitionniste, théorie algorithmique de l'information et en analyse de la complexité des algorithmes. Kolmogorov est né à Tambov en 1903. Sa mère Maria Iakovlevna Kolmogorova (1871-1903), célibataire, meurt en accouchant. Elle est la benjamine d'une fratrie dont l'aînée est décédée elle aussi.
Vecteur aléatoireUn vecteur aléatoire est aussi appelé variable aléatoire multidimensionnelle. Un vecteur aléatoire est une généralisation à n dimensions d'une variable aléatoire réelle. Alors qu'une variable aléatoire réelle est une fonction qui à chaque éventualité fait correspondre un nombre réel, le vecteur aléatoire est une fonction X qui à chaque éventualité fait correspondre un vecteur de : où ω est l'élément générique de Ω, l'espace de toutes les éventualités possibles. Les applications X, ...
Conditioning (probability)Beliefs depend on the available information. This idea is formalized in probability theory by conditioning. Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of conditioning is also random.
Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Loi de probabilité marginaleEn théorie des probabilités et en statistique, la loi marginale d'un vecteur aléatoire, c'est-à-dire d'une variable aléatoire à plusieurs dimensions, est la loi de probabilité d'une de ses composantes. Autrement dit, la loi marginale est une variable aléatoire obtenue par « projection » d'un vecteur contenant cette variable. Par exemple, pour un vecteur aléatoire , la loi de la variable aléatoire est la deuxième loi marginale du vecteur. Pour obtenir la loi marginale d'un vecteur, on projette la loi sur l'espace unidimensionnel de la coordonnée recherchée.
Épreuve de Bernoullivignette|Le pile ou face est un exemple d'épreuve de Bernouilli. En probabilité, une épreuve de Bernoulli de paramètre p (réel compris entre 0 et 1) est une expérience aléatoire (c'est-à-dire soumise au hasard) comportant deux issues, le succès ou l'échec. L'exemple typique est le lancer d'une pièce de monnaie possiblement pipée. On note alors p la probabilité d'obtenir pile (qui correspond disons à un succès) et 1-p d'obtenir face. Le réel p représente la probabilité d'un succès.
Théorie des possibilitésEn mathématiques et en informatique, la théorie des possibilités est une alternative à la théorie des probabilités pour représenter l'incertitude. Lotfi Zadeh a d'abord introduit la théorie des possibilités en 1978 comme une extension de sa théorie des ensembles flous et la logique floue. Didier Dubois et Henri Prade ont ensuite contribué à son développement. Étant donné un univers Ω que l'on suppose fini pour simplifier la présentation, une mesure ou distribution de possibilité est une fonction de dans [0, 1], c'est-à-dire à chaque sous-ensemble d'événements U, on associe pos(U) qui mesure la possibilité de U.