Résumé
thumb|Camille Jordan, auteur du théorème clé de la théorie En mathématiques et plus précisément en algèbre non commutative, un module sur un anneau est dit semi-simple ou complètement réductible s'il est somme directe de sous-modules simples ou, ce qui est équivalent, si chacun de ses sous-modules possède un supplémentaire. Les propriétés des modules semi-simples sont utilisées en algèbre linéaire pour l'analyse des endomorphismes, dans le cadre des anneaux semi-simples et pour la théorie des représentations des groupes. Soient A un anneau unitaire (non nécessairement commutatif) et M un A-module. M est dit simple s'il est non nul et sans autres sous-modules que {0} et M. Un sous-module de M est dit facteur direct s'il admet un sous-module supplémentaire. M est dit semi-simple si tout sous-module de M est facteur direct. Tout espace vectoriel est un module semi-simple (y compris un espace vectoriel sur un corps gauche), puisque tout sous-espace vectoriel possède un sous-espace supplémentaire – c'est une conséquence du théorème de la base incomplète. Anneau semi-simple Un anneau A est dit semi-simple s'il est semi-simple en tant que A-module. Dans ce cas, tous les A-modules seront semi-simples. Deux exemples historiques qui ont précédé la définition des modules semi-simples sont : l'algèbre engendrée par un endomorphisme diagonalisable (alors que si le polynôme minimal de l'endomorphisme possède une racine multiple, le sous-espace caractéristique correspondant n'est pas semi-simple : voir l'article « Réduction de Jordan ») ; la K-algèbre d'un groupe fini, si K est un corps dont la caractéristique est soit nulle, soit première avec l'ordre du groupe (voir l'article « Théorème de Maschke »). Pour tout module semi-simple M, les sous-modules de M et ses modules quotients sont semi-simples. En effet, soit S un sous-module de M. Soit P un sous-module de S, il admet un supplémentaire dans M ; l'intersection de ce supplémentaire et de S est un supplémentaire de P dans S, donc S est semi-simple.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
MATH-311: Algebra IV - rings and modules
Ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
MATH-319: Lie Algebras
On introduit les algèbres de Lie semisimples de dimension finie sur les nombres complexes et démontre le théorème de classification de celles-ci.
Afficher plus
Concepts associés (30)
Anneau nul
En mathématiques, on appelle anneau nul ou anneau trivial l'anneau A réduit au singleton . On a : Cet anneau est commutatif. Son élément neutre pour la multiplication, noté habituellement 1A dans un anneau quelconque, est ici égal à 0A, l'élément neutre pour l'addition. Réciproquement, le seul anneau A vérifiant 1A = 0A est l'anneau nul puisqu'alors, pour tout élément de A, on a : L'anneau nul est l'objet final dans la catégorie des anneaux unitaires (i.e.
Anneau artinien
En algèbre commutative, un anneau artinien est un anneau vérifiant la condition de chaîne descendante pour ses idéaux. Les anneaux artiniens doivent leur nom au mathématicien autrichien Emil Artin. On dit qu'un anneau commutatif (unitaire) A est un anneau artinien si c'est un A-module artinien, autrement dit, si toute suite décroissante d'idéaux de A est stationnaire. Cela équivaut à dire que tout ensemble non vide d'idéaux de A admet un élément minimal (pour la relation d'inclusion).
Endomorphism ring
In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.
Afficher plus