Résumé
In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity. The functions involved are restricted to what is defined as a homomorphism in the context, which depends upon the of the object under consideration. The endomorphism ring consequently encodes several internal properties of the object. As the resulting object is often an algebra over some ring R, this may also be called the endomorphism algebra. An abelian group is the same thing as a module over the ring of integers, which is the initial object in the . In a similar fashion, if R is any commutative ring, the endomorphisms of an R-module form an algebra over R by the same axioms and derivation. In particular, if R is a field, its modules M are vector spaces and their endomorphism rings are algebras over the field R. Let (A, +) be an abelian group and we consider the group homomorphisms from A into A. Then addition of two such homomorphisms may be defined pointwise to produce another group homomorphism. Explicitly, given two such homomorphisms f and g, the sum of f and g is the homomorphism f + g : x ↦ f(x) + g(x). Under this operation End(A) is an abelian group. With the additional operation of composition of homomorphisms, End(A) is a ring with multiplicative identity. This composition is explicitly fg : x ↦ f(g(x)). The multiplicative identity is the identity homomorphism on A. If the set A does not form an abelian group, then the above construction is not necessarily additive, as then the sum of two homomorphisms need not be a homomorphism. This set of endomorphisms is a canonical example of a near-ring that is not a ring.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
MATH-215: Rings and fields
C'est un cours introductoire dans la théorie d'anneau et de corps.
MATH-110(a): Advanced linear algebra I
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
MATH-115(b): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux du sujet.
Afficher plus
Publications associées (11)
Concepts associés (27)
Module semi-simple
thumb|Camille Jordan, auteur du théorème clé de la théorie En mathématiques et plus précisément en algèbre non commutative, un module sur un anneau est dit semi-simple ou complètement réductible s'il est somme directe de sous-modules simples ou, ce qui est équivalent, si chacun de ses sous-modules possède un supplémentaire. Les propriétés des modules semi-simples sont utilisées en algèbre linéaire pour l'analyse des endomorphismes, dans le cadre des anneaux semi-simples et pour la théorie des représentations des groupes.
Module simple
Un module M sur un anneau A est dit simple ou irréductible si M n'est pas le module nul et il n'existe pas de sous-modules de M en dehors de {0} et M. Les Z-modules simples sont les groupes abéliens simples, c'est-à-dire les groupes cycliques d'ordre premier. Les espaces vectoriels simples (sur un corps non nécessairement commutatif) sont les droites vectorielles. Étant donné un anneau A et I un idéal à gauche non nul de A, I est un A-module simple si et seulement si I est un idéal minimal à gauche.
Module homomorphism
In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The of the zero element under f is called the kernel of f.
Afficher plus