Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit Renku, une plateforme pour la science collaborative des données, mettant l'accent sur la reproductibilité, la shareability, la réutilisabilité et la sécurité.
Présente des outils collaboratifs de science des données comme les carnets Jupyter, Docker et Git, mettant l'accent sur la version des données et la conteneurisation.
Explore les modèles linéaires, la régression logistique, les métriques de classification, la MVS et leur utilisation pratique dans les méthodes de science des données.
Se concentre sur les fonctions avancées de pandas pour la manipulation, l'exploration et la visualisation des données avec Python, en soulignant l'importance de la compréhension et de la préparation des données.
Explore la théorie de la généralisation dans l'apprentissage automatique, en abordant les défis dans les espaces de dimension supérieure et le compromis entre les biais et les variables.
Souligne l'importance d'une validation croisée prudente dans les réseaux neuronaux profonds, y compris la division des données et le concept de validation croisée K-fold.