Axiom of projective determinacyIn mathematical logic, projective determinacy is the special case of the axiom of determinacy applying only to projective sets. The axiom of projective determinacy, abbreviated PD, states that for any two-player infinite game of perfect information of length ω in which the players play natural numbers, if the victory set (for either player, since the projective sets are closed under complementation) is projective, then one player or the other has a winning strategy.
Détermination (théorie des ensembles)La détermination est un sous-champ de la théorie des ensembles, une branche des mathématiques, qui s'intéresse aux conditions dans lesquelles un joueur peut avoir ou non une stratégie gagnante dans un jeu, à la complexité d'une telle stratégie quand elle existe, ainsi qu'aux conséquences de l'existence de telles stratégies. Les jeux étudiés en théorie des ensembles sont généralement des jeux de Gale-Stewart, c'est-à-dire des jeux à deux joueurs à où les joueurs font une suite infinie de coups et où aucun match nul n'est possible.
Théorie descriptive des ensemblesLa théorie descriptive des ensembles est une branche des mathématiques s'intéressant aux ensembles « définissables ». Son principal but est de classifier ces ensembles par complexité. Elle a de nombreux liens avec la théorie des ensembles et a des applications dans de nombreux domaines. Historiquement, les premières questions de la théorie descriptive des ensembles sont apparues à la suite de la découverte d'une erreur par Mikhaïl Souslin en dans une démonstration de Lebesgue.
Uniformization (set theory)In set theory, a branch of mathematics, the axiom of uniformization is a weak form of the axiom of choice. It states that if is a subset of , where and are Polish spaces, then there is a subset of that is a partial function from to , and whose domain (the set of all such that exists) equals Such a function is called a uniformizing function for , or a uniformization of . To see the relationship with the axiom of choice, observe that can be thought of as associating, to each element of , a subset of .
EquiconsistencyIn mathematical logic, two theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory T. Instead we usually take a theory S, believed to be consistent, and try to prove the weaker statement that if S is consistent then T must also be consistent—if we can do this we say that T is consistent relative to S.
Wadge hierarchyIn descriptive set theory, within mathematics, Wadge degrees are levels of complexity for sets of reals. Sets are compared by continuous reductions. The Wadge hierarchy is the structure of Wadge degrees. These concepts are named after William W. Wadge. Suppose and are subsets of Baire space ωω. Then is Wadge reducible to or ≤W if there is a continuous function on ωω with . The Wadge order is the preorder or quasiorder on the subsets of Baire space. Equivalence classes of sets under this preorder are called Wadge degrees, the degree of a set is denoted by []W.
Cardinal mesurableEn mathématiques, un cardinal mesurable est un cardinal sur lequel existe une mesure définie pour tout sous-ensemble. Cette propriété fait qu'un tel cardinal est un grand cardinal. Un cardinal mesurable est un cardinal non dénombrable κ tel qu'il existe une mesure μ non triviale, κ-additive, à valeurs dans , définie sur tous les sous-ensembles de κ ; μ est donc une application de l'ensemble des parties de κ vers telle que : Pour toute famille (avec α
Indépendance (logique mathématique)En logique mathématique, l'indépendance se réfère à la non-prouvabilité d'une proposition relativement à d'autres propositions. Une proposition σ est indépendante d'une théorie de premier ordre donnée T, si T ne prouve pas σ; à savoir, il est impossible de prouver σ à partir de T, et il est également impossible de prouver à partir de T que σ est faux. Parfois, σ est dit être indécidable de T; à ne pas confondre à la « décidabilité », du problème de décision.
Puissance du continuEn mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble R des nombres réels, c'est-à-dire s'il existe une bijection de E dans R. Le cardinal de R est parfois noté , en référence au , nom donné à l'ensemble ordonné (R, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques.
Grand cardinalEn mathématiques, et plus précisément en théorie des ensembles, un grand cardinal est un nombre cardinal transfini satisfaisant une propriété qui le distingue des ensembles constructibles avec l'axiomatique usuelle (ZFC) tels que א, א, etc., et le rend nécessairement plus grand que tous ceux-ci. L'existence d'un grand cardinal est donc soumise à l'acceptation de nouveaux axiomes. Un axiome de grand cardinal est un axiome affirmant qu'il existe un cardinal (ou parfois une famille de cardinaux) ayant une propriété de grand cardinal donnée.