vignette|redresse=1.5|Diagramme montrant le spectre électromagnétique dans lequel se distinguent plusieurs domaines spectraux en fonction des longueurs d'onde (avec des exemples de tailles), les fréquences correspondantes, et les températures du corps noir dont l'émission est maximum à ces longueurs d'onde. Le spectre électromagnétique est le classement des rayonnements électromagnétiques par fréquence et longueur d'onde dans le vide ou énergie photonique. Le spectre électromagnétique s'étend sans rupture de zéro à l'infini. Pour des raisons tant historiques que physiques, on le divise en plusieurs grandes classes, dans lesquelles le rayonnement s'étudie par des moyens particuliers. On décrit un rayonnement électromagnétique par ses caractéristiques les plus accessibles, selon sa forme et son utilisation. On caractérise habituellement les ondes radio par la fréquence, qui s'applique aussi bien aux circuits des appareils qu'on utilise pour les produire. Quand les fréquences croissent, les longueurs d'onde correspondantes se raccourcissent jusqu'à devenir du même ordre de grandeur que les appareils, et deviennent le paramètre d'utilisation le plus courant. Au-delà d'une certaine limite, on utilise principalement des instruments d'optique, tout comme pour la lumière, et la longueur d'onde dans le vide devient la caractéristique la plus commode. Elle joue directement dans le calcul des interférences dans les réseaux de diffraction et dans beaucoup d'autres applications. À partir des rayons X, les longueurs d'onde sont rarement utilisées : comme il s'agit de particules très énergétiques, c'est l’énergie correspondant au ou γ détecté qui est plus utile. On découpe habituellement le spectre électromagnétique en divers domaines selon la longueur d'onde et le type de phénomène physique émettant ce type d'onde : Le découpage détaillé en bandes de fréquence selon les normes de l'UIT se trouve dans le paragraphe « Usages et classification » ci-dessous. Le spectre optique recouvre les domaines de l'infrarouge, le spectre visible, et de l'ultraviolet.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
ENV-341: Remote sensing
Ce cours a pour objectif de familiariser les étudiants avec les principaux concepts, instruments et techniques de la télédétection environnementale. Les interactions ondes/matière, les différents type
PHYS-114: General physics : electromagnetism
Le cours traite des concepts de l'électromagnétisme, avec le support d'expériences. Les sujets traités inclus l'électrostatique, le courant électrique et circuits, la magnétostatique, l'induction élec
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
Afficher plus
Séances de cours associées (113)
Les équations de Maxwell et les ondes EM
Explore les équations de Maxwell, les ondes électromagnétiques, le spectre électromagnétique et les défis d'observation des oscillations de lumière.
Énergie électromagnétique et ondes
Couvre les potentiels électromagnétiques, l'énergie, les ondes et le travail en électrodynamique.
Énergie photonique et relation de longueur d'onde
Explore la relation énergie-longueur d'onde des photons et son application pratique.
Afficher plus
Publications associées (520)

Chip-Scale Watt-Range Terahertz Generation Based on Fast Transition in Nanoplasma Switches

Elison de Nazareth Matioli, Mohammad Rezaei

Despite recent advancements in photonics and electronics, there remains a lack of efficient, compact, high-power sources in the terahertz spectrum (0.3-10 THz). Recent research has revealed that nanoplasma (NP) switches can exhibit extremely fast transitio ...
2024

Electromagnetic Radiation of Implantable Antennas

Mingxiang Gao

In the development of implantable bioelectronics, the establishment of efficient wireless RF links between implants and external nodes is crucial, providing substantial contributions to the advancement of medical diagnosis, therapies, and basic science. Im ...
EPFL2024

Plasmonic Nanostructures for Photocatalysis: Material, Photonic and Electronic Effects

Fateme Kiani Shahvandi

Plasmonic photochemistry has a large potential to replace energy-intensive chemical processes with low-temperature, low-pressure light-driven chemical reactions. Plasmonic nanostructures have emerged as promising photocatalysts with exceptional and tunable ...
EPFL2024
Afficher plus
Concepts associés (41)
Infrarouge
Le rayonnement infrarouge (IR) est un rayonnement électromagnétique de longueur d'onde supérieure à celle du spectre visible mais plus courte que celle des micro-ondes ou du domaine térahertz. Cette gamme de longueurs d'onde dans le vide de à se divise en infrarouge proche, au sens de proche du spectre visible, de environ, infrarouge moyen, qui s'étend jusqu'à , et infrarouge lointain. Les limites de ces domaines peuvent varier quelque peu d'un auteur à l'autre.
Micro-onde
thumb|Expérience de transmission par micro-ondes (Laboratoire de la NASA). vignette|Spectre des rayonnements électromagnétiques en fonction de leur longueur d'onde. On retrouve notamment les micro-ondes, possédant une longueur d'onde entre et . Les micro-ondes ou microondes sont des rayonnements électromagnétiques de longueur d'onde intermédiaire entre l'infrarouge et les ondes de radiodiffusion. Le terme de micro-onde provient du fait que ces ondes ont une longueur d'onde plus courte que celles de la bande VHF, utilisée par les radars pendant la Seconde Guerre mondiale.
Lumière
vignette|Rayons de lumière sortant des nuages. Dans son sens le plus habituel, la lumière est le phénomène à l'origine d'une sensation visuelle. La physique montre qu'il s'agit d'ondes électromagnétiques. Le spectre visible est la zone du spectre électromagnétique à laquelle est sensible l'espèce humaine ; il inclut la longueur d'onde où l'éclairement énergétique solaire est maximal à la surface de la Terre, par un effet d'adaptation à l'environnement. Il s'étend autour d'une longueur d'onde de , plus ou moins un tiers.
Afficher plus
MOOCs associés (12)
Plasma Physics and Applications [retired]
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.