La banque de données sur les protéines ou BDP du Research Collaboratory for Structural Bioinformatics, plus communément appelée Protein Data Bank ou PDB est une collection mondiale de données sur la structure tridimensionnelle (ou structure 3D) de macromolécules biologiques : protéines, essentiellement, et acides nucléiques. Ces structures sont essentiellement déterminées par cristallographie aux rayons X ou par spectroscopie RMN. Ces données expérimentales sont déposées dans la PDB par des biologistes et des biochimistes du monde entier et appartiennent au domaine public. Leur consultation est gratuite et peut se faire directement depuis les sites internet de la banque : Europe : PDBe ; Japon : PDBj ; États-Unis : RCSB PDB. La PDB est la principale source de données de biologie structurale et permet en particulier d’accéder à des structures 3D de protéines d’intérêt pharmaceutique. Fondée en 1971 par le Laboratoire national de Brookhaven, la Banque de données des protéines a été transférée en 2003 au projet Worlwide Protein Data Bank (wwPDB), qui se compose de PDBe, PDBj, RCSB PDB et BMRB pour la RMN. Le financement est assuré par la National Science Foundation, le département de l'Énergie, la National Library of Medicine et le . L’Institut européen de bio-informatique (European Bioinformatics Institute, EBI), au Royaume-Uni, et l'Institute for Protein Research, au Japon, collectent et traitent également les fichiers de données structurales. La Worlwide Protein Data Bank (wwPDB) comprend trois organisations membres qui sont des centres de dépôt, de traitement et de distribution des données de la PDB : RCSB, aux États-Unis, PDBe, Protein Databank in Europe - EBI, Europe, et PDBj, Protein Data Bank Japan, au Japon. La mission de la wwPDB est de maintenir à jour une archive PDB unique de données structurales macromoléculaires, accessible gratuitement et publiquement pour l’ensemble de la communauté. À l’origine en 1971 la PDB contient sept structures. Le nombre de structures déposées augmente considérablement à partir des années 1980.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
CH-352: Introduction to cheminformatics
Introduction aux concepts de base de cheminformatique et aux principaux outils utilisés. Applications potentielles de ces outils en recherche pour la gestion de l'information.
BIO-212: Biological chemistry I
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
BIOENG-518: Methods: from disease models to therapy
This course will describe methods underlying translational approaches from disease modeling and characterization to therapeutic applications. The presented techniques will be complemented by hands-on
Afficher plus
Publications associées (60)
Concepts associés (19)
Nuclear magnetic resonance spectroscopy of proteins
Nuclear magnetic resonance spectroscopy of proteins (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and their complexes. The field was pioneered by Richard R. Ernst and Kurt Wüthrich at the ETH, and by Ad Bax, Marius Clore, Angela Gronenborn at the NIH, and Gerhard Wagner at Harvard University, among others.
Cryomicroscopie électronique
vignette|Un microscope électronique en transmission (2003). La cryomicroscopie électronique (cryo-ME) correspond à une technique particulière de préparation d’échantillons biologiques utilisée en microscopie électronique en transmission. Développée au début des années 1980, cette technique permet de réduire les dommages d’irradiation causés par le faisceau d’électrons. Elle permet également de préserver la morphologie et la structure des échantillons.
Structural genomics
Structural genomics seeks to describe the 3-dimensional structure of every protein encoded by a given genome. This genome-based approach allows for a high-throughput method of structure determination by a combination of experimental and modeling approaches. The principal difference between structural genomics and traditional structural prediction is that structural genomics attempts to determine the structure of every protein encoded by the genome, rather than focusing on one particular protein.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.