Chaleur sensibleLa chaleur sensible est la quantité de chaleur qui est échangée, sans transition de phase physique, entre plusieurs corps formant un système isolé. Elle est qualifiée de « sensible » parce que ce transfert thermique sans changement de phase change la température du corps, effet qui peut être ressenti ou mesuré par un observateur. En cela, la chaleur sensible s'oppose à la « chaleur latente », qui, elle, est absorbée lors d'un changement de phase, sans changement de température.
Processus spontanéUn processus spontané est une évolution temporelle d'un système dans laquelle il perd de l'enthalpie libre (souvent sous forme de chaleur) et rejoint un état thermodynamiquement plus stable en parcourant un chemin sur sa surface d'énergie potentielle. La convention de signe des modifications de l'énergie libre suit la convention générale des mesures thermodynamiques, dans lesquelles une libération d'énergie libre depuis le système correspond à une variation négative de l'énergie libre du système, mais une variation positive pour son environnement.
Enthalpy of mixingIn thermodynamics, the enthalpy of mixing (also heat of mixing and excess enthalpy) is the enthalpy liberated or absorbed from a substance upon mixing. When a substance or compound is combined with any other substance or compound, the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. This enthalpy, if released exothermically, can in an extreme case cause an explosion. Enthalpy of mixing can often be ignored in calculations for mixtures where other heat terms exist, or in cases where the mixture is ideal.
Énergie de liaison (chimie)En chimie, l'énergie de liaison (E) est la mesure de la force d'une liaison chimique. Elle représente l'énergie requise pour briser une mole de molécules en atomes individuels. Par exemple, l'énergie de la liaison carbone-hydrogène dans le méthane, E(C–H), est l'enthalpie nécessaire pour casser une molécule de méthane en un atome de carbone et quatre atomes d'hydrogène, divisée par 4. L'énergie de liaison ne doit pas être confondue avec l'énergie de dissociation de liaison, qui est, en dehors du cas particulier des molécules diatomiques, une quantité différente.
Loi de HessLa loi de Hess est une loi de la thermochimie, élaborée par le chimiste suisse Germain Henri Hess. Elle est basée sur la propriété de l'enthalpie d'être une fonction d'état et donc sa variation ne dépend que de l'état final et de l'état initial, au cours d'une transformation. Elle s'énonce ainsi : L'enthalpie de réaction d'une réaction chimique est égale à la somme des enthalpies de formation des produits (état final), diminuée de la somme des enthalpies de formation des réactifs (état initial), en tenant compte de la stœchiométrie de la réaction.
Enthalpie de solutionIn thermochemistry, the enthalpy of solution (heat of solution or enthalpy of solvation) is the enthalpy change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution. The enthalpy of solution is most often expressed in kJ/mol at constant temperature. The energy change can be regarded as being made of three parts: the endothermic breaking of bonds within the solute and within the solvent, and the formation of attractions between the solute and the solvent.
Réaction exergoniquevignette|Graphe de l'évolution de l'énergie par le temps dans une réaction exergonique. Une réaction exergonique est une réaction chimique spontanée qui libère de l'énergie, un travail, vers son environnement. C'est une réaction pour laquelle la variation de l'enthalpie libre (, fonction de Gibbs) est négative (à température et pression constantes). Les variations de l'énergie libre incluent les variations de l'enthalpie et de l'entropie, à la différence des réactions exothermiques et endothermiques, qui ne se définissent que par des variations de l'enthalpie seule, ces dernières étant liées à une perte ou un gain de chaleur.
Volume massiqueLe volume massique d'un objet, ou volume spécifique, est le quotient de son volume par sa masse. C'est donc l'inverse de sa masse volumique. Il est souvent noté (V minuscule) ou (la lettre minuscule grecque nu), en italique. avec : masse de l'objet ; volume de l'objet ; masse volumique de l'objet. Le volume massique s'exprime en mètres cubes par kilogramme (m/kg) dans le Système international d'unités (en centimètres cubes par gramme (cm/g) dans le système CGS) : = ; = .
Variable d'étatEn thermodynamique, des variables d'état sont des paramètres qui caractérisent l'état d'équilibre d'un système, tels que le volume, la température, la pression et la quantité de matière. Ces caractérisations sont elles-mêmes des fonctions d'état du système. Une variable d'état n'a de sens que pour un système à l'équilibre thermodynamique. Une variable d'état est toujours une grandeur physique scalaire. Il s'agit soit d'une grandeur extensive, définie sur l'ensemble du système considéré, soit d'une grandeur intensive, qui doit alors prendre la même valeur en tout point du système.
Processus isenthalpiqueAn isenthalpic process or isoenthalpic process is a process that proceeds without any change in enthalpy, H; or specific enthalpy, h. If a steady-state, steady-flow process is analysed using a control volume, everything outside the control volume is considered to be the surroundings. Such a process will be isenthalpic if there is no transfer of heat to or from the surroundings, no work done on or by the surroundings, and no change in the kinetic energy of the fluid. This is a sufficient but not necessary condition for isoenthalpy.