Concept

Primitive polynomial (field theory)

In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(pm). This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(pm) such that is the entire field GF(pm). This implies that α is a primitive (pm − 1)-root of unity in GF(pm). Because all minimal polynomials are irreducible, all primitive polynomials are also irreducible. A primitive polynomial must have a non-zero constant term, for otherwise it will be divisible by x. Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n such that F(x) divides xn − 1 is n = pm − 1. Over GF(p) there are exactly φ(pm − 1)/m primitive polynomials of degree m, where φ is Euler's totient function. A primitive polynomial of degree m has m different roots in GF(pm), which all have order pm − 1. This means that, if α is such a root, then α^p^m−1 = 1 and α^i ≠ 1 for 0 < i < pm − 1. The primitive polynomial F(x) of degree m of a primitive element α in GF(pm) has explicit form F(x) = (x − α)(x − α^p)(x − α^p^2)⋅⋅⋅(x − α^p^m−1). Primitive polynomials can be used to represent the elements of a finite field. If α in GF(pm) is a root of a primitive polynomial F(x), then the nonzero elements of GF(pm) are represented as successive powers of α: This allows an economical representation in a computer of the nonzero elements of the finite field, by representing an element by the corresponding exponent of This representation makes multiplication easy, as it corresponds to addition of exponents modulo Primitive polynomials over GF(2), the field with two elements, can be used for pseudorandom bit generation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.