Couvre la planification avec des adversaires, des algorithmes de recherche heuristique et des stratégies pour les jeux avec le hasard, en soulignant l'importance des agents délibératifs.
Explore le concept de sous-séquence commune la plus longue et son algorithme de programmation dynamique, en mettant l'accent sur une sous-structure optimale et une résolution efficace des problèmes.
Explore l'optimisation accélérée de l'ordre de jointage GPU dans les grands espaces de recherche, en tirant parti de la topologie graphique pour réduire les frais généraux de calcul.
Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.