Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Le nivellement ou nivèlement en topographie est l'ensemble des opérations consistant à mesurer des différences de niveau (ou dénivelés ou dénivellation), généralement pour déterminer des altitudes. En d'autres termes, le nivellement permet de mesurer des dénivelés puis de déduire l'altitude de repères ou de points caractéristiques du sol ou d'ouvrages. Les altitudes peuvent être rapportées à une référence locale (qu'il est d'usage de choisir plus basse que le point le plus bas de la zone étudiée pour ne pas avoir d'altitudes négatives, et suffisamment différente du niveau de référence général pour éviter les confusions), ou à un système de référence plus général. Le système utilisé en France métropolitaine, le Nivellement général de la France (NGF), rapporte toutes les altitudes à celle du niveau moyen de la mer mesuré au marégraphe de Marseille situé sur la Corniche, qui est l'altitude zéro, généralement dite « niveau de la mer ». Les difficultés du nivellement sont de deux types : Le principal problème à résoudre par le nivellement est celui des écoulements d'eaux. C'est donc un problème physique, et non géométrique. La différence entre une forme théorique de la Terre et la forme réelle des surfaces de niveaux est parfois considérable. Les appareils utilisés jusqu'à une époque très récente étaient tous réglés par une mesure physique (utilisation d'une nivelle ou d'un dispositif équivalent). L'utilisation de mesures GPS oblige aujourd'hui à modéliser le géoïde en recherchant une formule d'interpolation locale qui minimise les écarts constatés sur des repères connus à la fois dans un système géométrique (WGS par exemple) et dans le système physique. Une autre difficulté tient à la propagation de la lumière dans l'atmosphère : l'air ayant un poids, sa densité décroît avec l'altitude, et ce gradient de densité occasionne un gradient d'indice de réfraction : les rayons lumineux, dans une atmosphère calme et à l'équilibre, sont incurvés vers la terre, dans une mesure qui dépend de la température et de l'altitude.
, , ,
, , ,