It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
obtain algorithmically effective versions of the dense lattice sphere packings constructed from orders in Q-division rings by the first author. The lattices in question are lifts of suitable codes from prime characteristic to orders O in Q-division rings a ...
Object detection plays a critical role in various computer vision applications, encompassing
domains like autonomous vehicles, object tracking, and scene understanding. These applica-
tions rely on detectors that generate bounding boxes around known object ...
In the recent years, considerable attention has been paid to preserving structures and invariants in reduced basis methods, in order to enhance the stability and robustness of the reduced system. In the context of Hamiltonian systems, symplectic model redu ...
Let R be a unital commutative ring, and let M be an R-module that is generated by k elements but not less. Let be the subgroup of generated by the elementary matrices. In this paper we study the action of by matrix multiplication on the set of unimodular r ...
Let G be a connected reductive algebraic group over an algebraically closed field k,gamma is an element of g( k(( epsilon ))) a semisimple regular element, we introduce a fundamental domain F gamma for the affine Springer fibers X gamma. We show that the p ...
We consider the problem of learning implicit neural representations (INRs) for signals on non-Euclidean domains. In the Euclidean case, INRs are trained on a discrete sampling of a signal over a regular lattice. Here, we assume that the continuous signal e ...
Domain generalization (DG) tackles the problem of learning a model that generalizes to data drawn from a target domain that was unseen during training. A major trend in this area consists of learning a domain-invariant representation by minimizing the disc ...
The paper presents a novel method to verify and debug gate-level arithmetic circuits implemented in Galois Field arithmetic. The method is based on forward reduction of the specification polynomials of the circuit in GF(2(m)) using GF(2) models of its logi ...
In this paper, we consider composite convex minimization problems. We advocate the merit of considering Generalized Proximal gradient Methods (GPM) where the norm employed is not Euclidean. To that end, we show the tractability of the general proximity ope ...