Triangulation de DelaunayEn mathématiques et plus particulièrement en géométrie algorithmique, la triangulation de Delaunay d'un ensemble P de points du plan est une triangulation DT(P) telle qu'aucun point de P n'est à l'intérieur du cercle circonscrit d'un des triangles de DT(P). Les triangulations de Delaunay maximisent le plus petit angle de l'ensemble des angles des triangles, évitant ainsi les triangles « allongés ». Cette triangulation a été inventée par le mathématicien russe Boris Delaunay, dans un article publié en 1924.
Arbre couvrant de poids minimalthumb|L'arbre couvrant de poids minimal d'un graphe planaire. Chaque arête est identifiée avec son poids qui, ici, est approximativement sa longueur. En théorie des graphes, étant donné un graphe non orienté connexe dont les arêtes sont pondérées, un arbre couvrant de poids minimal (ACM), arbre couvrant minimum ou arbre sous-tendant minimum de ce graphe est un arbre couvrant (sous-ensemble qui est un arbre et qui connecte tous les sommets ensemble) dont la somme des poids des arêtes est minimale (c'est-à-dire de poids inférieur ou égal à celui de tous les autres arbres couvrants du graphe).