L'excitotoxicité est un processus pathologique d'altération et de destruction neuronale ou neurotoxicité, par hyperactivation par l'acide glutamique et ses analogues (tous étant des neurotransmetteurs excitateurs). Ces neurotransmetteurs activent des récepteurs excitateurs neuronaux comme les récepteurs NMDA et AMPA (-Amino-3-hydroxy-5-méthylisoazol-4-propionate). Ces excitotoxines comme le NMDA (N-méthyl-D-aspartate) et l'acide kaïnique, ou les glutamates en trop grande concentration, en se liant à ces récepteurs provoquent une entrée massive dans la cellule d'ions calcium. Le Ca++ active à son tour un certain nombre d'enzymes dont des phospholipases C, des endonucléases et des protéases telle la calpaïne. Ces enzymes dégradent alors les structures cellulaires : cytosquelette, membrane cellulaire, ADN.
Ce mécanisme physiopathologique est incriminé dans un certain nombre de maladies neurologiques comme les traumatismes de la moelle épinière, les traumatismes cérébraux, la surdité acquise (par ototoxicité liée à la surexposition au bruit), et les accidents vasculaires cérébraux, ou neurodégénératives du système nerveux central comme la sclérose en plaques, la maladie d'Alzheimer, la sclérose latérale amyotrophique, la fibromyalgie, la maladie de Parkinson ou enfin la chorée de Huntington. D'autres pathologies fréquentes entraînent une libération excessive de glutamate comme l'hypoglycémie ou l'état de mal épileptique.
Les effets négatifs du glutamate ont été décrits pour la première fois par le japonais T. Hayashi en 1954. Il nota que l'application directe de glutamate sur le système nerveux central causait des crises épileptiques. Cette description a été oubliée pendant de nombreuses années.
L'excitotoxicité a été observée pour la première fois dans le cas du glutamate monosodique en 1957 par D. R. Lucas et J.P. Newhouse. L'expérience initiale consistait à nourrir des souris nouveau-nées avec du glutamate monosodique. Il a été constaté la destruction de neurones dans la couche interne de la rétine.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
La notion de traumatisme crânien, ou traumatisme cranio-cérébral (TCC), couvre les traumatismes du neurocrâne (partie haute du crâne contenant le cerveau) et du cerveau. Les manifestations cliniques dépendent de l'importance de l'impact et des facteurs associés (âge, pathologies préexistantes autres, traumatismes associés). Par la situation anatomique de la tête, le traumatisme crânien est souvent associé à des traumatismes du rachis cervical (entorses, luxations, fractures), du visage (contusions, plaies, fractures maxillo-faciales) et oculaires.
thumb|Représentation schématique d'un récepteur NMDA activé. Le glutamate et la glycine occupent leurs sites de liaison. S'il était occupé, le site allostérique causerait l'inactivation du récepteur. Les récepteurs NMDA requièrent la liaison de deux molécules de glutamate ou d'aspartate et deux de glycine. thumb|Structure de la molécule de NMDA. Les récepteurs NMDA (récepteur au N-méthyl-D-aspartate) sont des récepteurs ionotropes activés dans des conditions physiologiques par le glutamate et la glycine qui sont essentiels à la mémoire et à la plasticité synaptique.
Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter.
Explore les mutations SOD1 dans la SLA, en se concentrant sur le gain toxique de fonction, le mauvais repliement des protéines et les maladies autonomes non cellulaires.
Explore les mécanismes de la SLA, en mettant l'accent sur la pathologie SOD1, y compris le gain toxique de fonction, l'erreur de repli des protéines, le stress ER, et la dysfonction mitochondriale.
Explore les principaux neurotransmetteurs, leurs effets, la pharmacothérapie et les mécanismes récepteurs dans le fonctionnement du cerveau.
Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) in term newborns is a leading cause of mortality and chronic disability. Hypothermia (HT) is the only clinically available therapeutic intervention; however, its neuroprotective effects are limited. Lacto ...
Basel2023
,
Glutamate is a principal neurotransmitter used extensively by the nervous systems of all vertebrate and invertebrate animals. It is primarily an excitatory neurotransmitter that has been implicated in nervous system development, as well as a myriad of brai ...
OXFORD UNIV PRESS INC2022
,
This study aims to determine whether 1) individuals with treatment-resistant schizophrenia display early cognitive impairment compared to treatment-responders and healthy controls and 2) N-methyl-D-aspartate-receptor hypofunction is an underlying mechanism ...