HyperhomologyIn homological algebra, the hyperhomology or hypercohomology () is a generalization of (co)homology functors which takes as input not objects in an but instead chain complexes of objects, so objects in . It is a sort of cross between the derived functor cohomology of an object and the homology of a chain complex since hypercohomology corresponds to the derived global sections functor . Hyperhomology is no longer used much: since about 1970 it has been largely replaced by the roughly equivalent concept of a derived functor between derived categories.
Godement resolutionThe Godement resolution of a sheaf is a construction in homological algebra that allows one to view global, cohomological information about the sheaf in terms of local information coming from its stalks. It is useful for computing sheaf cohomology. It was discovered by Roger Godement. Given a topological space X (more generally, a topos X with enough points), and a sheaf F on X, the Godement construction for F gives a sheaf constructed as follows. For each point , let denote the stalk of F at x.
Complex analytic varietyIn mathematics, and in particular differential geometry and complex geometry, a complex analytic variety or complex analytic space is a generalization of a complex manifold which allows the presence of singularities. Complex analytic varieties are locally ringed spaces which are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions. Denote the constant sheaf on a topological space with value by .
Schéma noethérienEn géométrie algébrique, les schémas noethériens sont aux schémas ce que les anneaux noethériens sont aux anneaux commutatifs. Ce sont les schémas qui possèdent un certain nombre de propriétés de finitude. De nombreux résultats fondamentaux en géométrie algébrique sont montrés dans le cadre des schémas noethériens. Il est généralement considéré comme raisonnable de travailler dans la catégorie des schémas noethériens. Un schéma affine Spec A est noethérien si A est un anneau noethérien.
Local cohomologyIn algebraic geometry, local cohomology is an algebraic analogue of relative cohomology. Alexander Grothendieck introduced it in seminars in Harvard in 1961 written up by , and in 1961-2 at IHES written up as SGA2 - , republished as . Given a function (more generally, a section of a quasicoherent sheaf) defined on an open subset of an algebraic variety (or scheme), local cohomology measures the obstruction to extending that function to a larger domain.
Alexandre GrothendieckAlexandre Grothendieck, né Alexander Grothendieck (prononcé en allemand : ), est un mathématicien français, né le à Berlin et mort le à Saint-Lizier, près de Saint-Girons (Ariège). Il est resté longtemps apatride tout en vivant principalement en France ; il a acquis la nationalité française en 1971. Il est considéré comme le refondateur de la géométrie algébrique et, à ce titre, comme l'un des plus grands mathématiciens du . Il était connu pour son intuition extraordinaire et sa capacité de travail exceptionnelle.
Cohomologie cristallineLa cohomologie cristalline est une cohomologie de Weil pour les schémas, introduite par Alexander Grothendieck en 1966 et développée par Pierre Berthelot. Elle étend le domaine d'application de la cohomologie étale en considérant les modules sur les anneaux de vecteurs de Witt sur le corps de base. Conjectures de Weil Dans l'étude des variétés différentiables compactes, la formule de Lefschetz permet de calculer le nombre de points fixes d'un morphisme de la variété dans elle-même.
Holomorphic vector bundleIn mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : E → X is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle. By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety X (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.
Relative homologyIn algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace. Given a subspace , one may form the short exact sequence where denotes the singular chains on the space X. The boundary map on descends to and therefore induces a boundary map on the quotient.
Coherent dualityIn mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent.