State of charge (SoC) is the level of charge of an electric battery relative to its capacity. SoC is usually expressed as percentage (0% = empty; 100% = full). An alternative form of the same measure is the depth of discharge (DoD), calculated as 100 - SoC (100% = empty; 0% = full). SoC is normally used when discussing the current state of a battery in use, while DoD is most often seen when discussing the lifetime of the battery after repeated use.
In a battery electric vehicle (BEV), SoC for the battery pack is the equivalent of a fuel gauge.
It is important to mention that state of charge, presented as a gauge or percentage value on any vehicle dashboard, especially in plug-in hybrid vehicles, may not be representative of a real level of charge. In that particular case, some noticeable amount of energy stored in the electric battery is not shown on the dashboard, and is reserved for hybrid-work operations. It permits a vehicle to accelerate with electric motors mainly using battery energy, while the petrol engine serves as a generator and recharges the battery to the minimum level needed for such operation. Examples of such cars are Mitsubishi Outlander PHEV (all versions/years of production), where 0% of the state of charge presented to the driver is a real 20-22% of charge level (assuming zero level as the lowest level of charge permitted by car producer). Another one is BMW i3 REX (Range Extender version), where about 6% of SOC is reserved for PHEV-alike operations. Tesla has stated that their SoC should be less than 95%, with some commentators saying between 30%-80% . There is some data to back this up as well.
The state of charge (SOC) can help to reduce electrical car's owners' anxiety when they are waiting in the line or stay at home since it will reflect the progress of charging and let owners know when it will be ready.
Usually, SoC cannot be measured directly but it can be estimated from direct measurement variables in two ways: offline and online.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction to analog CMOS design for Remote Biosensors on Chip. Understanding and designing of active and remotely powered biosensing systems. Basic understanding of eh wireless transmission of teh
This course is a joint initiative between the School of Engineering and the College of Management to encourage and promote entrepreneurship and management skills, engineering design, hands-on experien
A battery electric vehicle (BEV), pure electric vehicle, only-electric vehicle, fully electric vehicle or all-electric vehicle is a type of electric vehicle (EV) that exclusively uses chemical energy stored in rechargeable battery packs, with no secondary source of propulsion (a hydrogen fuel cell, internal combustion engine, etc.). BEVs use electric motors and motor controllers instead of internal combustion engines (ICEs) for propulsion. They derive all power from battery packs and thus have no internal combustion engine, fuel cell, or fuel tank.
Une pile électrique, couramment dénommée « pile », est un dispositif électrochimique qui produit de l'électricité en convertissant de l'énergie chimique en énergie électrique grâce à une réaction d'oxydoréduction. Ce système électrochimique a été inventé par le scientifique italien Alessandro Volta en empilant des couches de deux métaux séparées par des feutres imbibés d'acide. Le Bureau international des poids et mesures choisit de nommer l'unité de potentiel électrique le volt, en référence à Volta.
An electric vehicle battery (EVB, also known as a traction battery) is a rechargeable battery used to power the electric motors of a battery electric vehicle (BEV) or hybrid electric vehicle (HEV). Electric vehicle batteries differ from starting, lighting, and ignition (SLI) batteries, as they are typically lithium-ion batteries that are designed for high power-to-weight ratio and energy density. Smaller, lighter batteries are desirable because they reduce the weight of the vehicle and therefore improve its performance.
Par l'instructeur Mario Paolone explore les défis et les solutions de l'intégration de systèmes de stockage d'énergie distribués dans les réseaux électriques.
Couvre les instructions d'examen, les solutions d'équation d'onde pour les cordes vibrantes et la détermination de la solution finale en fonction des conditions initiales.
The solid electrolyte interphase (SEI) is a key component of a lithium-ion battery forming during the first few dischage/charge cycles at the interface between the anode and the electrolyte. The SEI passivates the anode-electrolyte interface by inhibiting ...
Washington2023
, , ,
The body-centered cubic (bcc) polymorph of NaCB11H12 has been stabilized at room temperature by highenergy mechanical milling. Temperature-dependent electrochemical impedance spectroscopy shows an optimum at 45-min milling time, leading to an rt conductivi ...
Electrochemical batteries are ubiquitous devices in our society. When employed in mission-critical applications, the ability to precisely predict their end-of-discharge under highly variable operating conditions is of paramount importance in order to suppo ...