Concepts associés (47)
Diviseur de zéro
En mathématiques, dans un anneau, un diviseur de zéro est un élément non nul dont le produit par un certain élément non nul est égal à zéro. Soient un anneau et tel que , où est l'élément neutre pour la loi . On dit que est un diviseur de zéro à gauche dans si On dit que est un diviseur de zéro à droite dans si On dit que est un diviseur de zéro dans si est un diviseur de zéro à gauche dans ou un diviseur de zéro à droite dans . Un élément de est dit régulier s'il n'est ni nul, ni diviseur de zéro.
Classe (mathématiques)
En mathématiques, la notion de classe généralise celle d'ensemble. Les deux termes sont parfois employés comme synonymes, mais la théorie des ensembles distingue ces deux notions. Un ensemble peut être vu comme une collection d'objets, mais aussi comme un objet mathématique, qui en particulier peut lui-même appartenir à un autre ensemble. Ce n'est pas forcément le cas d'une classe, qui est une collection d'objets que l'on peut définir, dont on peut donc parler, mais qui ne forme pas nécessairement un ensemble.
Morphisme de groupes
Un morphisme de groupes ou homomorphisme de groupes est une application entre deux groupes qui respecte la structure de groupe. Plus précisément, c'est un morphisme de magmas d'un groupe dans un groupe , c'est-à-dire une application telle que et l'on en déduit alors que f(e) = e (où e et e désignent les neutres respectifs de G et G) et ∀x ∈ G f(x) = [f(x)]. donc ; en composant par l'inverse de , on obtient (autrement dit, un morphisme de groupes conserve l'idempotence, et l'élément neutre d'un groupe est son unique élément idempotent).
Corps gauche
En mathématiques, un corps gauche ou anneau à division (parfois simplement appelé corps, voir plus bas) est une des structures algébriques utilisées en algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles certains types d'additions, de soustractions, de multiplications et de divisions. Plus précisément, un corps gauche est un anneau dans lequel l'ensemble des éléments non nuls est un groupe pour la multiplication. Un corps gauche dont la multiplication est commutative est appelé « corps commutatif ».
Terme (logique)
Un terme est une expression de base du calcul des prédicats, de l'algèbre, notamment de l'algèbre universelle, et du calcul formel, des systèmes de réécriture et de l'unification. C'est l'objet produit par une analyse syntaxique. Sa principale caractéristique est d'être homogène (il n'y a que des opérations de base et pas d'opérations logiques) et de décrire l'agencement des opérations de base. Un terme est parfois appelé une formule du premier ordre.
Join and meet
In mathematics, specifically order theory, the join of a subset of a partially ordered set is the supremum (least upper bound) of denoted and similarly, the meet of is the infimum (greatest lower bound), denoted In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion. A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice.
Quasigroupe
En mathématiques, et plus précisément en algèbre générale, un quasigroupe est un ensemble muni d'une loi de composition interne (un magma) pour laquelle (en pensant cette loi comme une multiplication), il est possible de diviser, à droite comme à gauche, le quotient à droite et le quotient à gauche étant uniques. En d'autre termes l'opération de multiplication à droite est bijective, de même que celle de multiplication à gauche. La loi n'est pas nécessairement associative, et si elle l'est, le quasigroupe est un groupe.
Monade (théorie des catégories)
Une monade est une construction catégorique qui mime formellement le comportement que les monoïdes ont en algèbre. Introduite par Roger Godement sous le nom de « construction standard », la notion est d'abord diffusée sous le nom de triple avant d'être baptisée monade par Jean Bénabou. Elles permettent notamment de formuler des adjonctions et ont (au travers des comonades) un rôle important en géométrie algébrique, notamment en théorie des topos. Elles permettent également de définir les , dont les .
Archimédien
À l'origine, l'énoncé de l'axiome d'Archimède est le suivant : « Pour deux grandeurs inégales, il existe toujours un multiple entier de la plus petite, supérieur à la plus grande. » Une structure algébrique est dite archimédienne si ses éléments vérifient une telle propriété. Intuitivement, la propriété d'Archimède indique que pour deux valeurs, la plus grande pourra toujours être mesurée à l'aune de la plus petite : en ajoutant un nombre fini de fois la plus petite valeur, on finira toujours par dépasser la plus grande.
Signature (logique)
En calcul des prédicats et en algèbre universelle, une signature est une liste de symboles de constante, de fonction ou de relation, chacun ayant une arité. Dans certains formalismes, pour avoir moins de non-dit, la signature est une liste de couples (symbole, arité). La signature fournit les éléments primitifs pour la construction d'un langage du premier ordre sur cette signature. En calcul des prédicats à plusieurs types d'objets et en théorie des types, chaque symbole possède un type (l'arité n'est pas suffisante).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.