Une table de Karnaugh (prononcé ) est une méthode graphique et simple pour trouver ou simplifier une fonction logique à partir de sa table de vérité. Elle utilise le code de Gray (aussi appelé binaire réfléchi), qui a comme propriété principale de ne faire varier qu'un seul bit entre deux mots successifs (la distance de Hamming de deux mots successifs du code de Gray est égale à 1). Cette méthode a été développée par Maurice Karnaugh en 1953, en perfectionnant un diagramme similaire introduit en 1952 par . Un tableau de Karnaugh peut être vu comme une table de vérité particulière, à deux dimensions, destinées à faire apparaître visuellement les simplifications possibles. Supposons ou variables : on assignera par exemple ou variables au repérage des lignes, les autres variables au repérage des colonnes. Chaque case élémentaire correspond alors à une seule ligne et à une seule colonne, donc à une seule combinaison des variables. Examinons le cas d'une fonction des quatre variables A, B, C, D, les variables A et B étant assignées aux lignes, C et D aux colonnes de la table ci-dessous. Cette table est proche du diagramme de Veitch antérieur. Pour rendre plus évidentes les simplifications cherchées, Karnaugh propose, pour la succession des valeurs données à C et D, ainsi qu'à A et B, d'employer un code de Gray, de sorte que les valeurs de deux repères consécutifs ne diffèrent que par la modification d'une seule variable, et fasse apparaître des symétries utiles. Ainsi : La colonne 1 correspond aux valeurs de S pour et , ou La colonne 2 correspond aux valeurs de S pour et , ou La colonne 3 correspond aux valeurs de S pour et , ou La colonne 4 correspond aux valeurs de S pour et , ou La ligne 1 correspond aux valeurs de S pour et , ou La ligne 2 correspond aux valeurs de S pour et , ou La ligne 3 correspond aux valeurs de S pour et , ou La ligne 4 correspond aux valeurs de S pour et , ou . Alors, on assigne à la case de la ligne 4, colonne 2 la valeur de quand et . Cette valeur peut être trouvée dans la table de vérité ou par une équation à simplifier.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
CS-173: Fundamentals of digital systems
Welcome to the introductory course in digital design and computer architecture. In this course, we will embark on a journey into the world of digital systems, exploring the fundamental principles and
EE-110: Logic systems (for MT)
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.