Uniform 2 k1 polytopeDISPLAYTITLE:Uniform 2 k1 polytope In geometry, 2k1 polytope is a uniform polytope in n dimensions (n = k+4) constructed from the En Coxeter group. The family was named by their Coxeter symbol as 2k1 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence. It can be named by an extended Schläfli symbol {3,3,3k,1}. The family starts uniquely as 6-polytopes, but can be extended backwards to include the 5-orthoplex (pentacross) in 5-dimensions, and the 4-simplex (5-cell) in 4-dimensions.
1 33 honeycombDISPLAYTITLE:1 33 honeycomb In 7-dimensional geometry, 133 is a uniform honeycomb, also given by Schläfli symbol {3,33,3}, and is composed of [[1 32 polytope|132]] facets. It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 7-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram. Removing a node on the end of one of the 3-length branch leaves the 132, its only facet type. The vertex figure is determined by removing the ringed node and ringing the neighboring node.
1 22 polytopeDISPLAYTITLE:1 22 polytope In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Elte's 1912 listing of semiregular polytopes, named as V72 (for its 72 vertices). Its Coxeter symbol is 122, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequence. There are two rectifications of the 122, constructed by positions points on the elements of 122. The rectified 122 is constructed by points at the mid-edges of the 122.
1 52 honeycombDISPLAYTITLE:1 52 honeycomb In geometry, the 152 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. It contains 142 and 151 facets, in a birectified 8-simplex vertex figure. It is the final figure in the 1k2 polytope family. It is created by a Wythoff construction upon a set of 9 hyperplane mirrors in 8-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram. Removing the node on the end of the 2-length branch leaves the 8-demicube, 151.
E9 honeycombDISPLAYTITLE:E9 honeycomb In geometry, an E9 honeycomb is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. , also (E10) is a paracompact hyperbolic group, so either facets or vertex figures will not be bounded. E10 is last of the series of Coxeter groups with a bifurcated Coxeter-Dynkin diagram of lengths 6,2,1. There are 1023 unique E10 honeycombs by all combinations of its Coxeter-Dynkin diagram.
2 22 honeycombDISPLAYTITLE:2 22 honeycomb In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol {3,3,32,2}. It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex. Its vertex arrangement is the E6 lattice, and the root system of the E6 Lie group so it can also be called the E6 honeycomb. It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 6-dimensional space.
Rectified 7-simplexesIn seven-dimensional geometry, a rectified 7-simplex is a convex uniform 7-polytope, being a rectification of the regular 7-simplex. There are four unique degrees of rectifications, including the zeroth, the 7-simplex itself. Vertices of the rectified 7-simplex are located at the edge-centers of the 7-simplex. Vertices of the birectified 7-simplex are located in the triangular face centers of the 7-simplex. Vertices of the trirectified 7-simplex are located in the tetrahedral cell centers of the 7-simplex.
Rectified 5-simplexesIn five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex. There are three unique degrees of rectifications, including the zeroth, the 5-simplex itself. Vertices of the rectified 5-simplex are located at the edge-centers of the 5-simplex. Vertices of the birectified 5-simplex are located in the triangular face centers of the 5-simplex.
Rectified 5-cellIn four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In total it has 30 triangle faces, 30 edges, and 10 vertices. Each vertex is surrounded by 3 octahedra and 2 tetrahedra; the vertex figure is a triangular prism. Topologically, under its highest symmetry, [3,3,3], there is only one geometrical form, containing 5 regular tetrahedra and 5 rectified tetrahedra (which is geometrically the same as a regular octahedron).
Rectified 8-simplexesIn eight-dimensional geometry, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex. There are unique 3 degrees of rectifications in regular 8-polytopes. Vertices of the rectified 8-simplex are located at the edge-centers of the 8-simplex. Vertices of the birectified 8-simplex are located in the triangular face centers of the 8-simplex. Vertices of the trirectified 8-simplex are located in the tetrahedral cell centers of the 8-simplex. E. L.