**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Concept# Simulation software

Résumé

Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mock up of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome.
Advanced computer programs can simulate power system behavior, weather conditions, electronic circuits, chemical reactions, mechatronics, heat pumps

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

Publications associées (35)

Chargement

Chargement

Chargement

Personnes associées (5)

Concepts associés (1)

Simulation de phénomènes

La simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les r

Séances de cours associées (21)

Cours associés (12)

EE-470: Power systems dynamics

This course focuses on the dynamic behavior of a power system. It presents the basic definitions, concepts and models for angular stability analysis with reference to transient stability, steady state stability and long term stability.Fundamentals related to voltage stability are introduced as well.

MGT-427: Project management and risk analysis

Ce cours a pour objectif de présenter l'approche générale du management de projet en intégrant la gestion du risque dans toutes les étapes du projet.

MICRO-470: Scaling laws & simulations in micro & nanosystems

This class combines an analytical and finite elements modeling (FEM) simulations approach to scaling laws in MEMS/NEMS. The dominant physical effects and scaling effects when downsizing sensors and actuators in microsystems are discussed, across a broad range of actuation principles.

Marnik Bercx, Kristjan Eimre, Sebastiaan Philippe Huber, Conrad Johnston, Nicola Marzari, Giovanni Pizzi, Samuel Poncé, Gian-Marco Rignanese, Christopher John Sewell, Berend Smit, Martin Uhrin, Aliaksandr Yakutovich, Austin Jacob Zadoks

The prediction of material properties based on density-functional theory has become routinely common, thanks, in part, to the steady increase in the number and robustness of available simulation packages. This plurality of codes and methods is both a boon and a burden. While providing great opportunities for cross-verification, these packages adopt different methods, algorithms, and paradigms, making it challenging to choose, master, and efficiently use them. We demonstrate how developing common interfaces for workflows that automatically compute material properties greatly simplifies interoperability and cross-verification. We introduce design rules for reusable, code-agnostic, workflow interfaces to compute well-defined material properties, which we implement for eleven quantum engines and use to compute various material properties. Each implementation encodes carefully selected simulation parameters and workflow logic, making the implementer’s expertise of the quantum engine directly available to non-experts. All workflows are made available as open-source and full reproducibility of the workflows is guaranteed through the use of the AiiDA infrastructure.

2021Advanced power flow control for multiple Flexible Alternative Current Transmission System (FACTS) devices is described here. An installation of multiple FACTS devices offers a great advantage concerning the flexibility of a system-wide power flow control. However, their individual unco-ordinated control actions may cause mutual negative effects. Therefore, a control tool for multiple FACTS devices capable of managing system congestions in a continuously changing deregulated environment has been developed. The controller prototype has been tested using simulation software for power systems in order to assess its performance considering different scenarios. As an example, the Swiss power system has been used in this paper.

2005Unités associées (6)

The current development of generators and power electric drives is characterized by increased power electronic integration. This evolution concerns particularly the variable speed power units allowing both a higher performance and substantial savings on cost but nevertheless, it implies new constraints and difficulties in term of interaction between the various components: generator, converter and network. The design and optimization of such generators is no longer possible with the same approach and same tools as for conventional machines directly connected to a symmetrical three-phase network. This Ph.D. study is related to an industrial project which was developed by ALSTOM in the same time frame in which this thesis work was prepared. Since the project relies on a new high power synchronous generator topology (a multiphase turbo-generator connected to a three phase network via a power electronic converter), not many studies were done especially because of the enormous financial resources required by such studies and limitations in respect of the maximum power that a power electronic device can commute. The goal of this study is the development of an advanced multiphase machine model which can be used in a complex system comprising power electronic elements. The model has to accurately consider the physical phenomena which are taking place in a machine while functioning in such conditions. The selected approach for the development of the machine model is a combined numerical-analytical approach. This solution was preferred since it can take benefit from the precision, a property which is characteristic to the numerical Finite Element Methods (FEM), but also from the fast computation times which is a property of the analytical models. The model presented in this thesis is based on the differential inductance parameter. The differential inductances are calculated analyzing the results of FEM simulations and are used afterwards in analytically expressed circuit equations. The machine circuit equations, having as parameters the differential inductances, are afterwards solved numerically. In order to take advantage of the existing elements necessary for the analysis of the electrical power networks (including power electronic converters), the developed method was integrated into a network simulation software package. This simulation software package was designed for industrial use where a short computation time is desired; the module with the integrated machine model is respecting this principle.