Concept

Binary octahedral group

Concepts associés (6)
Binary tetrahedral group
In mathematics, the binary tetrahedral group, denoted 2T or , is a certain nonabelian group of order 24. It is an extension of the tetrahedral group T or (2,3,3) of order 12 by a cyclic group of order 2, and is the of the tetrahedral group under the 2:1 covering homomorphism Spin(3) → SO(3) of the special orthogonal group by the spin group. It follows that the binary tetrahedral group is a discrete subgroup of Spin(3) of order 24. The complex reflection group named 3(24)3 by G.C.
Binary cyclic group
In mathematics, the binary cyclic group of the n-gon is the cyclic group of order 2n, , thought of as an extension of the cyclic group by a cyclic group of order 2. Coxeter writes the binary cyclic group with angle-brackets, ⟨n⟩, and the index 2 subgroup as (n) or [n]+. It is the binary polyhedral group corresponding to the cyclic group. In terms of binary polyhedral groups, the binary cyclic group is the preimage of the cyclic group of rotations () under the 2:1 covering homomorphism of the special orthogonal group by the spin group.
Binary icosahedral group
In mathematics, the binary icosahedral group 2I or is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by the cyclic group of order 2, and is the of the icosahedral group under the 2:1 covering homomorphism of the special orthogonal group by the spin group. It follows that the binary icosahedral group is a discrete subgroup of Spin(3) of order 120. It should not be confused with the full icosahedral group, which is a different group of order 120, and is rather a subgroup of the orthogonal group O(3).
Groupe dicyclique
En algèbre et plus précisément en théorie des groupes, le groupe dicyclique (pour tout entier n ≥ 2) est défini par la présentation Les groupes () sont les groupes quaternioniques (les groupes dicycliques nilpotents). En particulier, est le groupe des quaternions. est un groupe non abélien d'ordre 4n, extension par le sous-groupe cyclique engendré par (normal et d'ordre 2n) d'un groupe d'ordre 2. Il est donc résoluble. Contrairement au groupe diédral D, cette extension n'est pas un produit semi-direct.
Point groups in three dimensions
In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries. Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries.
Groupe des quaternions
En mathématiques et plus précisément en théorie des groupes, le groupe des quaternions est l'un des deux groupes non abéliens d'ordre 8. Il admet une représentation réelle irréductible de degré 4, et la sous-algèbre des matrices 4×4 engendrée par son image est un corps gauche qui s'identifie au corps des quaternions de Hamilton. Le groupe des quaternions est souvent désigné par le symbole Q ou Q8 et est écrit sous forme multiplicative, avec les 8 éléments suivants : Ici, 1 est l'élément neutre, et pour tout a dans Q.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.