In spectroscopy and quantum chemistry, the multiplicity of an energy level is defined as 2S+1, where S is the total spin angular momentum. States with multiplicity 1, 2, 3, 4, 5 are respectively called singlets, doublets, triplets, quartets and quintets. In the ground state of an atom or molecule, the unpaired electrons usually all have parallel spin. In this case the multiplicity is also equal to the number of unpaired electrons plus one. The multiplicity is often equal to the number of possible orientations of the total spin relative to the total orbital angular momentum L, and therefore to the number of near–degenerate levels that differ only in their spin–orbit interaction energy. For example, the ground state of a carbon atom is 3P ([]). The superscript three (read as triplet) indicates that the multiplicity 2S+1 = 3, so that the total spin S = 1. This spin is due to two unpaired electrons, as a result of Hund's rule which favors the single filling of degenerate orbitals. The triplet consists of three states with spin components +1, 0 and –1 along the direction of the total orbital angular momentum, which is also 1 as indicated by the letter P. The total angular momentum quantum number J can vary from L+S = 2 to L–S = 0 in integer steps, so that J = 2, 1 or 0. However the multiplicity equals the number of spin orientations only if S ≤ L. When S > L there are only 2L+1 orientations of total angular momentum possible, ranging from S+L to S-L. The ground state of the nitrogen atom is a 4S state, for which 2S + 1 = 4 in a quartet state, S = 3/2 due to three unpaired electrons. For an S state, L = 0 so that J can only be 3/2 and there is only one level even though the multiplicity is 4. Most stable organic molecules have complete electron shells with no unpaired electrons and therefore have singlet ground states. This is true also for inorganic molecules containing only main-group elements. Important exceptions are dioxygen (O2) as well as methylene (CH2) and other carbenes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
CH-431: Physical and computational organic chemistry
This course introduces modern computational electronic structure methods and their broad applications to organic chemistry. It also discusses physical organic concepts to illustrate the stability and
PHYS-464: Solid state systems for quantum information
This course will give an overview of the experimental state of the art of quantum technology for Quantum Information Processing (QIP). We will explore some of the most promising approaches for realizi
CH-244: Quantum chemistry
Introduction to Quantum Mechanics with examples related to chemistry
Afficher plus
Séances de cours associées (26)
Ingénierie optique: Fluorescence et colorimétrie
Explore les concepts d'ingénierie optique, y compris la fluorescence, les points quantiques, la perception des couleurs et la technologie OLED.
Interactions: Interactions d'échange
Explique les états singulet et triplet, l'énergie d'échange et les interactions dans l'hydrogène métallique.
Détection quantique avec Single Spins
Couvre la détection quantique avec des spins simples, en se concentrant sur le centre de vide d'azote dans le diamant et ses applications dans les matériaux antiferromagnétiques.
Afficher plus
Publications associées (67)

Symmetry-Induced Singlet-Triplet Inversions in Non-Alternant Hydrocarbons

Marc Hamilton Folkmann Garner, Anne-Clémence Corminboeuf, Jacob Terence Blaskovits

Molecules with inversion of the singlet and triplet excited-state energies are highly promising for the development of organic light-emitting diodes (OLEDs). To date, azaphenalenes are the only class of molecules where these inversions have been identified ...
2023

Double-bond delocalization in non-alternant hydrocarbons induces inverted singlet-triplet gaps

Marc Hamilton Folkmann Garner, Jacob Terence Blaskovits

Molecules where the first excited singlet state is lower in energy than the first excited triplet state have the potential to revolutionize OLEDs. This inverted singlet-triplet gap violates Hund's rule and currently there are only a few molecules which are ...
ROYAL SOC CHEMISTRY2023

Double-bond delocalization in non-alternant hydrocarbons induces inverted singlet-triplet gaps

Marc Hamilton Folkmann Garner, Jacob Terence Blaskovits

Molecules where the first excited singlet state is lower in energy than the first excited triplet state have the potential to revolutionize OLEDs. This inverted singlet-triplet gap violates Hund's rule and currently there are only a few molecules which are ...
ROYAL SOC CHEMISTRY2023
Afficher plus
Concepts associés (3)
Règle de Hund
En physique atomique, les règles de Hund se réfèrent à un ensemble de règles simples utilisées pour déterminer quel est le terme spectroscopique fondamental de l'atome considéré. Elles furent proposées par Friedrich Hund. En chimie, la première de ces règles est particulièrement importante, et l'on se réfère souvent à elle seule sous le terme de « règle de Hund ». Les trois règles de Hund sont : Pour une configuration électronique donnée, le terme de plus faible énergie est celui maximisant le spin total ( maximal), ainsi que la multiplicité qui égale .
Oxygène singulet
L'oxygène singulet, de symbole ou O=O, est un état excité de la molécule de dioxygène. Il se forme notamment par réaction de l'eau oxygénée et de l'eau de Javel, par action des ions hypochlorite ClO sur le peroxyde : ClO → + Cl + , réaction qui s'accompagne d'une très faible luminescence rouge foncé par relaxation des molécules d'oxygène singulet.
Moment cinétique (mécanique quantique)
En mécanique quantique le moment cinétique est défini comme un opérateur vectoriel (noté ) à trois composantes, correspondant chacune aux différentes dimensions de l'espace (opérateurs « scalaires »). Celles-ci obéissent entre elles à certaines relations de commutation. Ainsi, alors qu'en mécanique classique les trois composantes du moment cinétique peuvent être simultanément mesurées, ceci est impossible dans le cadre quantique.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.