Disque de PoincaréEn géométrie, le disque de Poincaré (appelé aussi représentation conforme) est un modèle du plan hyperbolique, ou plus généralement de la géométrie hyperbolique à n dimensions, où les points sont situés dans la boule unité ouverte de dimension n et les droites sont soit des arcs de cercles contenus dans cette boule et orthogonaux à sa frontière, soit des diamètres de la boule. En plus du modèle de Klein et du demi-plan de Poincaré, il a été proposé par Eugenio Beltrami pour démontrer que la consistance de la géométrie hyperbolique était équivalente à la consistance de la géométrie euclidienne.
HypercycleEn géométrie hyperbolique, un hypercycle est une courbe formée de tous les points situés à la même distance, appelée le rayon, d'une droite fixée (appelée son axe). Les hypercycles peuvent être considérés comme des cercles généralisés, mais possèdent aussi certaines propriétés des droites euclidiennes ; dans le modèle du disque de Poincaré, les hypercycles sont représentés par des arcs de cercles. En géométrie euclidienne, l'ensemble de tous les points situés à distance donnée d'une droite donnée est formée de deux parallèles à cette droite (c'est cette propriété que Clairaut prend comme définition du parallèlisme).
Modèle de KleinEn mathématiques, et plus précisément en géométrie non euclidienne, le 'modèle de Beltrami-Klein, également appelé modèle projectif ou modèle du disque de Klein', est un modèle de géométrie hyperbolique de dimension n dans lequel l'espace hyperbolique est modélisé par la boule unité euclidienne ouverte de rayon 1 de dimension n, les points de l'espace hyperbolique étant les points de la boule unité, et les droites de l'espace hyperbolique étant les cordes de la boule unité.
Modèle de l'hyperboloïdeEn géométrie, le modèle de l'hyperboloïde, également dénommé modèle de Minkowski ou modèle de Lorentz (d'après les noms de Hermann Minkowski et Hendrik Lorentz), est un modèle de géométrie hyperbolique dans un espace de Minkowski de dimension n. Ce modèle d'espace hyperbolique est étroitement lié au modèle de Klein ou au disque de Poincaré. Espace de Minkowski Si x = (x0, x1, ...
Demi-plan de PoincaréLe demi-plan de Poincaré est un sous-ensemble des nombres complexes. Il a permis au mathématicien français Henri Poincaré d'éclairer les travaux du Russe Nikolaï Lobatchevski. Le demi-plan de Poincaré est formé par les nombres complexes de partie imaginaire strictement positive. Il fournit un exemple de géométrie non euclidienne, plus précisément de géométrie hyperbolique. On considère le demi-plan supérieur : On munit le demi-plan supérieur de la métrique : Cette métrique possède une courbure scalaire constante négative : On se ramène usuellement au cas d'une courbure unité, c’est-à-dire qu'on choisit : a = 1 pour simplifier les équations.
Eugenio BeltramiEugenio Beltrami (1835-1900), appelé Eugène Beltrami en français, est un mathématicien et physicien italien. Il est connu pour ses travaux sur l'élasticité, l'hydrodynamique, l’électricité et le magnétisme, mais son nom est surtout associé à l'histoire de la géométrie, et au rôle fondamental qu'il joua dans l'affermissement des fondements de la géométrie non euclidienne. Sa famille paternelle comptait des artistes, dont son père, un peintre passionné de miniatures.
Pseudosphèrethumb|right|La pseudosphère étudiée par Eugenio Beltrami En géométrie, le terme de pseudosphère est utilisé pour décrire diverses surfaces dont la courbure de Gauss est constante et négative. Selon le contexte, il peut se référer soit à une surface théorique de courbure négative (une variété riemannienne), soit à une surface effectivement réalisée de l'espace, telle qu'une tractricoïde. Dans son acception la plus générale, une pseudosphère de rayon R est une surface (complète et simplement connexe) de courbure totale en tout point égale à , par analogie à la sphère de rayon R dont la courbure est .
Géométrie hyperboliqueEn mathématiques, la géométrie hyperbolique (nommée auparavant géométrie de Lobatchevski, lequel est le premier à en avoir publié une étude approfondie) est une géométrie non euclidienne vérifiant les quatre premiers postulats d’Euclide, mais pour laquelle le cinquième postulat, qui équivaut à affirmer que par un point extérieur à une droite passe une et une seule droite qui lui est parallèle, est remplacé par le postulat selon lequel « par un point extérieur à une droite passent plusieurs droites parallèle