In multivariate statistics, a scree plot is a line plot of the eigenvalues of factors or principal components in an analysis. The scree plot is used to determine the number of factors to retain in an exploratory factor analysis (FA) or principal components to keep in a principal component analysis (PCA). The procedure of finding statistically significant factors or components using a scree plot is also known as a scree test. Raymond B. Cattell introduced the scree plot in 1966.
A scree plot always displays the eigenvalues in a downward curve, ordering the eigenvalues from largest to smallest. According to the scree test, the "elbow" of the graph where the eigenvalues seem to level off is found and factors or components to the left of this point should be retained as significant.
The scree plot is named after the elbow's resemblance to a scree in nature.
This test is sometimes criticized for its subjectivity. Scree plots can have multiple "elbows" that make it difficult to know the correct number of factors or components to retain, making the test unreliable. There is also no standard for the scaling of the x and y axes, which means that different statistical programs can produce different plots from the same data.
The test has also been criticized for producing too few factors or components for factor retention.
As the "elbow" point has been defined as point of maximum curvature, as maximum curvature captures the leveling off effect operators use to identify knees, this has led to the creation of a Kneedle algorithm.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'analyse factorielle est un terme qui désigne aujourd'hui plusieurs méthodes d'analyses de grands tableaux rectangulaires de données, visant à déterminer et à hiérarchiser des facteurs corrélés aux données placées en colonnes. Au sens anglo-saxon du terme, l'analyse factorielle (factor analysis) désigne une méthode de la famille de la statistique multivariée, utilisée pour décrire un ensemble de variables observées, au moyen de variables latentes (non observées).
L'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Explorer la théorie principale de l'analyse des composants, les propriétés, les applications et les tests d'hypothèse dans les statistiques multivariées.
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
In this report, spectroscopy was used to track the energy of different states in a LiHoF4 sample around its critical temperature. The experimental setup consist of a Cooper cavity with the sample, an antenna and a resonator inside. This cavity is attached ...
2022
Falls are common in the elderly, and potentially result in injury and disability. Thus, preventing falls as soon as possible in older adults is a public health priority, yet there is no specific marker that is predictive of the first fall onset. We hypothe ...