MATH-261: Discrete optimizationThis course is an introduction to linear and discrete optimization.
Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
MATH-329: Continuous optimizationThis course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith
MGT-418: Convex optimizationThis course introduces the theory and application of modern convex optimization from an engineering perspective.
MGT-483: Optimal decision makingThis course introduces the theory and applications of optimization. We develop tools and concepts of optimization and decision analysis that enable managers in manufacturing, service operations, marke
CS-330: Artificial intelligenceIntroduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.
CS-450: Algorithms IIA first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.