Résumé
The ventromedial prefrontal cortex (vmPFC) is a part of the prefrontal cortex in the mammalian brain. The ventral medial prefrontal is located in the frontal lobe at the bottom of the cerebral hemispheres and is implicated in the processing of risk and fear, as it is critical in the regulation of amygdala activity in humans. It also plays a role in the inhibition of emotional responses, and in the process of decision-making and self-control. It is also involved in the cognitive evaluation of morality. While the ventromedial prefrontal cortex does not have a universally agreed on demarcation, in most sources, it is equivalent to the ventromedial reward network of Öngür and Price. This network includes Brodmann area 10, Brodmann area 14, Brodmann area 25, and Brodmann area 32, as well as portions of Brodmann area 11, Brodmann area 12, and Brodmann area 13. However, not all sources agree on the boundaries of the area. Different researchers use the term ventromedial prefrontal cortex differently. Sometimes, the term is saved for the area above the medial orbitofrontal cortex, while at other times, 'ventromedial prefrontal cortex' is used to describe a broad area in the lower (ventral) central (medial) region of the prefrontal cortex, of which the medial orbitofrontal cortex constitutes the lowermost part. This latter, broader area, corresponds to the area damaged in patients with decision-making impairments investigated by António Damásio and colleagues (see diagram, and below). The ventromedial prefrontal cortex is connected to and receives input from the ventral tegmental area, amygdala, the temporal lobe, the olfactory system, and the dorsomedial thalamus. It, in turn, sends signals to many different brain regions including; The temporal lobe, amygdala, the lateral hypothalamus, the hippocampal formation, the cingulate cortex, and certain other regions of the prefrontal cortex. This huge network of connections affords the vmPFC the ability to receive and monitor large amounts of sensory data and to affect and influence a plethora of other brain regions, particularly the amygdala.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (6)
BIO-499: Neural circuits of motivated behaviors
Motivated behaviors fulfil the basic physiological needs of animals and enable their safety. In this course, you will learn about the neuronal circuits that detect potential dangers in the environment
BIO-311: Neuroscience
The course starts with fundamentals of electrical - and chemical signaling in neurons. Students then learn how neurons in the brain receive and process sensory information, and how other neurons contr
BIO-480: Neuroscience: from molecular mechanisms to disease
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
Afficher plus
Publications associées (150)
MOOCs associés (3)
Neuro Robotics
At the same time, several different tutorials on available data and data tools, such as those from the Allen Institute for Brain Science, provide you with in-depth knowledge on brain atlases, gene exp
Neurorobotics
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
Neurorobotics
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t