In homotopy theory, a branch of mathematics, a Quillen adjunction between two C and D is a special kind of adjunction between that induces an adjunction between the Ho(C) and Ho(D) via the total derived functor construction. Quillen adjunctions are named in honor of the mathematician Daniel Quillen.
Given two closed model categories C and D, a Quillen adjunction is a pair
(F, G): C D
of adjoint functors with F left adjoint to G such that F preserves cofibrations and trivial cofibrations or, equivalently by the closed model axioms, such that G preserves fibrations and trivial fibrations. In such an adjunction F is called the left Quillen functor and G is called the right Quillen functor.
It is a consequence of the axioms that a left (right) Quillen functor preserves weak equivalences between cofibrant (fibrant) objects. The total derived functor theorem of Quillen says that the total left derived functor
LF: Ho(C) → Ho(D)
is a left adjoint to the total right derived functor
RG: Ho(D) → Ho(C).
This adjunction (LF, RG) is called the derived adjunction.
If (F, G) is a Quillen adjunction as above such that
F(c) → d
with c cofibrant and d fibrant is a weak equivalence in D if and only if
c → G(d)
is a weak equivalence in C then it is called a Quillen equivalence of the closed model categories C and D. In this case the derived adjunction is an adjoint equivalence of categories so that
LF(c) → d
is an isomorphism in Ho(D) if and only if
c → RG(d)
is an isomorphism in Ho(C).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
En mathématiques, plus précisément en théorie de l'homotopie, une catégorie de modèles est une catégorie dotée de trois classes de morphismes, appelés équivalences faibles, fibrations et cofibrations, satisfaisant à certains axiomes. Ceux-ci sont abstraits du comportement homotopique des espaces topologiques et des complexes de chaînes. La théorie des catégories de modèles est une sous-branche de la théorie des catégories et a été introduite par Daniel Quillen en 1967 pour généraliser l'étude de l'homotopie aux catégories et ainsi avoir de nouveaux outils pour travailler avec l'homotopie dans les espaces topologiques.
In this thesis, we study the homotopical relations of 2-categories, double categories, and their infinity-analogues. For this, we construct homotopy theories for the objects of interest, and show that there are homotopically full embeddings of 2-categories ...
EPFL2021
We prove that four different ways of defining Cartesian fibrations and the Cartesian model structure are all Quillen equivalent: 1.On marked simplicial sets (due to Lurie [31]), 2.On bisimplicial spaces (due to deBrito [12]), 3.On bisimplicial sets, 4.On m ...
We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such ...